A Ricci inequality for hypersurfaces in the sphere

By

Ezio Araujo Costa

Abstract. Let \(M^n \) be a complete Riemannian manifold immersed isometrically in the unity Euclidean sphere \(S^{n+1} \). In [9], B. Smyth proved that if \(M^n, n \geq 3 \), has sectional curvature \(K \) and Ricci curvature \(\text{Ric} \), with \(\inf K > -\infty \), then \(\sup \text{Ric} \geq (n-2) \) unless the universal covering \(\tilde{M}^n \) of \(M^n \) is homeomorphic to \(\mathbb{R}^n \) or homeomorphic to an odd-dimensional sphere. In this paper, we improve the result of Smyth. Moreover, we obtain the classification of complete hypersurfaces of \(S^{n+1} \) with nonnegative sectional curvature.

Introduction. Let \(M^n \) be a Riemannian \(n \)-manifold and \(\tilde{M}^n \) the universal covering of \(M^n \) endowed with the metric of the covering. Let \(S^k_c \) be the \(k \)-dimensional sphere with sectional curvature \(c \), \(S^{n+1} \) the unity Euclidean \((n+1) \)-sphere and \(\mathbb{R}^n \) the Euclidean \(n \)-space. Let \(K \) be the sectional curvature of \(M^n \) and \(\text{Ric} \) its Ricci curvature. In [5], Efimov proved that for a complete surface \(M^2 \) of \(\mathbb{R}^3 \), we have that \(\sup K \geq 0 \). This result generalizes the Hilbert theorem which asserts that the hyperbolic plane cannot be immersed isometrically in \(\mathbb{R}^3 \). The theorem of Efimov was partially generalized by B. Smyth and F. Xavier [11] for hypersurfaces of \(\mathbb{R}^{n+1} \). The corrected form of Efimov’s inequality for a hypersurface of \(S^{n+1} \) was obtained by Smyth in [9]:

Theorem [B. Smyth]. Let \(f: M^n \longrightarrow S^{n+1}, n \geq 3 \), be a complete oriented hypersurface with Ricci curvature \(\text{Ric} \) and with sectional curvature \(K \) such that \(\sup K > -\infty \). Then we have only two possibilities (1) or (2):

1) \(\sup \text{Ric} \geq n - 2 \).

2) \(\sup \text{Ric} < n - 2 \) and in this case we have:
 a) If \(M^n \) is compact, then \(n \) is odd and \(\tilde{M}^n \) of \(M^n \) is homeomorphic to \(S^n \).
 b) If \(M^n \) is non compact, then \(M^n \) is homeomorphic to \(\mathbb{R}^n \).

Also, in [10, Theorem 2], B. Smyth proved that if \(M^n \) is compact oriented and \(f: M^n \longrightarrow S^{n+1} \) is an isometric immersion with constant mean curvature, then \(\sup \text{Ric} \geq n - 2 \). In [8, Theorem A], Hasanis and Vlachos proved the following:

\[\text{Mathematics Subject Classification (2000): 53C40, 53C42.} \]
Theorem [Hasanis-Vlachos]. Let $f : M^n \to S^{n+1}$, $n \geq 3$, be a complete oriented and minimal hypersurface. Then $\sup \text{Ric} \geq n - 2$. Moreover, we have

1) If n is even, then $\sup \text{Ric} = n - 2$ if and only if $f(M^n)$ is isometric to the Clifford torus $S^{n/2}_2 \times S^{n/2}_2$.
2) If n is odd and $\sup \text{Ric} = n - 2$, then \tilde{M}^n is homeomorphic to S^n.

In this paper, we improve the theorem of Smyth, see Theorem A, the one of Hasanis/Vlachos, see Corollary A:

Theorem A. Let $f : M^n \to S^{n+1}$, $n \geq 3$, be a complete and oriented hypersurface with mean curvature H. Then:

1) If H is constant, then $\sup \text{Ric} \geq n - 2$.
2) If H is bounded and $\sup \text{Ric} \leq n - 2$, then there are two possibilities:
 a) If M^n is compact then \hat{M}^n is homeomorphic to S^n and n is odd or $n = 2$ and \hat{M}^2 is homeomorphic to \mathbb{R}^2, or $n > 3$ and $f(M^n)$ is isometric to the Clifford torus $S^k_{c_1} \times S^{n-k}_{c_2}$. H is constant and $\text{Ric} \equiv n - 2$. Moreover, in the last case, we have that $c_1 = \frac{n-2}{k-1}, c_2 = \frac{n-2}{n-k-1}, k > 1, n-k > 1$ and
 \[
 |H| = \frac{|n-2k|}{\sqrt{n(n-1)(n-k-1)}}.
 \]
 b) If M^n is non compact and $n \geq 3$, then \tilde{M}^n is homeomorphic to \mathbb{R}^n.
3) If $n \geq 3$, H is unbounded, $\sup \text{Ric} \leq n - 2$ and $\inf K > -\infty$, where K denotes the sectional curvature of M^n, then M^n is homeomorphic to \mathbb{R}^n.

Corollary A. Let $f : M^n \to S^{n+1}$, $n \geq 2$, be a complete oriented hypersurface with constant mean curvature H. Then $\sup \text{Ric} \geq n - 2$. Moreover,

1) If $n = 2$ and $\sup \text{Ric} = 0$, then \hat{M}^2 is homeomorphic to \mathbb{R}^2.
2) If $n > 2$ and $\sup \text{Ric} \leq n - 2$, then M^n is homeomorphic to S^n and n is odd or $f(M^n)$ is isometric to the Clifford torus $S^k_{c_1} \times S^{n-k}_{c_2}$, $\text{Ric} \equiv n - 2$, where $k > 1, n-k > 1$, $c_1 = \frac{n-2}{k-1}, c_2 = \frac{n-2}{n-k-1}$ and
 \[
 |H| = \frac{|n-2k|}{\sqrt{n(n-1)(n-k-1)}}.
 \]

Remark. We don’t know an example showing that the alternative $\sup \text{Ric} = n - 2$ and $\text{Ric} \neq n - 2$ can actually occur in Theorem A and Corollary B.

In the proof of the Theorem A, we use the following result.

Theorem B. Let $f : M^n \to S^{n+1}_c$, $n \geq 3$, be an isometric immersion, where M^n is a complete oriented Riemannian n-manifold. Suppose that M^n has sectional curvature $K \geq 0$. Then: