Confined Banach spaces

By

SEÁN DINEEN and MICHAEL MACKEY

Abstract. We discuss smoothness of the Weyl functional calculus and use it to prove that every C*-algebra is a confined Banach space.

1. Introduction. A Banach space \(X \) is said to be confined if there exists a bounded \(C^\infty \) mapping \(f : X \rightarrow X \) such that \(f(x) = x \) for all \(x \) on some neighbourhood of the origin. Confined Banach spaces arise in the work of C. J. Atkin who considers the problem of replacing the assumption of the existence of a smooth partition of unity (see [5]) with weaker and more accessible conditions (see [2], [3]). More recently, L. Lempert [6] has used confined spaces to extend the collection of Banach spaces which admit a positive solution to the Cousin problem. Atkin gives a number of examples of confined spaces, such as \(C(K) \). The main result in this paper is to show that any C*-algebra is a confined space. To obtain this result we use the non-commutative Weyl functional calculus, originally defined in [8], and which has since been extended to arbitrary self-adjoint operators by Anderson [1] and Taylor [7]. In Section 2 of this paper we discuss \(C^\infty \) mappings between Banach spaces, in Section 3 we discuss the Weyl functional calculus and in the final section we show that C*-algebras are confined Banach spaces.

2. Smooth mappings between Banach spaces. An \(n \)-homogeneous polynomial between Banach spaces \(X \) and \(Y \) is the restriction to the diagonal of an \(n \)-linear mapping from \(X \times \ldots \times X \) to \(Y \). If \(f : U \subset X \rightarrow Y \) (\(U \) open) and \(x \in U \) we say that \(f \) is (Fréchet) differentiable at \(x \) if there exists \(T \in L(X, Y) \), the space of bounded linear operators from \(X \) to \(Y \) endowed with the operator norm, such that

\[
\lim_{y \to 0} \frac{\| f(x + y) - f(x) - T(y) \|}{\| y \|} = 0.
\]

This work was carried out with the partial support of Science Foundation Ireland grant R9317.
The mapping T is necessarily unique and is called the derivative of f at x, written $f'(x)$ or $df(x)$. If f is differentiable at all points of U and the mapping $df : x \in U \rightarrow df(x) \in L(X, Y)$ is continuous then we say that $f \in \mathcal{C}^1(U, Y)$ and call f a continuously differentiable function. By induction, we let $d^m f := d(d^{m-1} f)$ for $m > 1$ and define $\mathcal{C}^m(U, Y)$ as the set of all f such that $d^m f$ exists and is continuous. Since differentiable mappings are continuous it follows that $f \in \mathcal{C}^\infty(U, Y)$ if and only if f has an mth order derivative at each point x in U for all m.

By the well-known correspondence between n-homogeneous polynomials and symmetric n-linear mappings and the fact that the order of partial differentiation for smooth functions can be interchanged, we see that $f : U \subset X \rightarrow Y \in \mathcal{C}^\infty(U, Y)$ if and only if for all $x \in U$ there exists a sequence $(P_{j,n})_{j=0}^n$, $P_{j,n} \in \mathcal{C}^\infty(U, Y)$ (the continuous f-homogeneous polynomials form X to Y) such that for some $\delta > 0$ we have

$$\lim_{\epsilon \to 0} \sup_{\|y\| = \delta} \left\| f(x + \epsilon y) - \sum_{j=0}^n \epsilon^j P_{j,n}(y) \right\| = 0.$$ \hspace{1cm} (1)

Uniqueness of Taylor series expansions implies that $P_{j,n+1} = P_{j,n}$ for all n and all $j \leq n$.

3. The Weyl functional calculus. Let $\mathcal{S}[\mathbb{R}]$ denote the self-adjoint elements in the unital \mathbb{C}^*-algebra \mathcal{A}. The Weyl functional calculus was first defined for finite self-adjoint tuples by M.E. Taylor [7] and afterwards extended by R.F.V. Anderson [1]. Various collections of function spaces can be considered and we have just confined ourselves to the collection suitable for our purposes. Let $\mathcal{S}(\mathbb{R}^n)$ denote the Schwartz space of rapidly decreasing real-valued functions on \mathbb{R}^n with the topology of uniform convergence of the function and its partial derivatives. Let $\mathcal{E}(\mathbb{R}^n)$ denote the Fréchet space of real-valued \mathcal{C}^∞ functions on \mathbb{R}^n endowed with the topology of uniform convergence of the function and its partial derivatives on compact subsets of \mathbb{R}^n. Let \mathcal{F} denote the Fourier transform and for $A := (A_1, \ldots, A_n) \in \mathcal{N}[\mathbb{R}]$ and $\lambda := (\lambda_1, \ldots, \lambda_n) \in \mathbb{R}^n$ we let $\langle \lambda, A \rangle = \sum_{i=1}^n \lambda_i A_i$.

The mapping $\xi : (f, A) \in \mathcal{S}(\mathbb{R}^n) \times \mathcal{N}[\mathbb{R}] \mapsto f(A) \in \mathcal{S}[\mathbb{R}]$ given by

$$f(A) := \langle f, \mathcal{F}^{-1}(\exp(i\langle \cdot, A \rangle)) \rangle$$

$$= : (\mathcal{F}(f), \exp(i\langle \cdot, A \rangle))$$

$$= : (2\pi)^{-n/2} \int_{\mathbb{R}^n} (\mathcal{F}f)(\lambda) \exp(-i\langle \lambda, A \rangle) d\lambda$$

is well defined and, by [1, Theorem 2.9(c)], we have

$$\|\xi(f, A)\| \leq (2\pi)^{-n/2} \int_{\mathbb{R}^n} \|\exp(-i\langle \lambda, A \rangle)\| \|\mathcal{F}(f)\| d\lambda$$

$$= \|\mathcal{F}(\phi f)\|_{L^1}$$