Exact multiplicity for the perturbed Q-curvature problem in $\mathbb{R}^N, N \geq 5$

Abhishek Sarkar and S. Prashanth

Abstract. Let $N \geq 5$ and $\mathcal{D}^{2,2}(\mathbb{R}^N)$ denote the closure of $C^\infty_0(\mathbb{R}^N)$ in the norm $\|u\|_{\mathcal{D}^{2,2}(\mathbb{R}^N)} := \int_{\mathbb{R}^N} |\Delta u|^2$. Let $K \in C^2(\mathbb{R}^N)$. We consider the following problem for $\varepsilon \geq 0$:

\[
(P_\varepsilon) \begin{cases}
\text{Find } u \in \mathcal{D}^{2,2}(\mathbb{R}^N) \text{ solving } \\
\Delta^2 u = (1 + \varepsilon K(x))u^{N+4} \\
u > 0
\end{cases} \text{ in } \mathbb{R}^N.
\]

We show an exact multiplicity result for (P_ε) for all small $\varepsilon > 0$.

Mathematics Subject Classification (2010). 35B32, 35B33, 35J91, 35B09.

Keywords. Biharmonic operator, Q-Curvature problem, Exact multiplicity, Scalar curvature.

1. Introduction. Let $N \geq 5$, and let $\mathcal{D}^{2,2}(\mathbb{R}^N)$ denote the closure of $C^\infty_0(\mathbb{R}^N)$ in the norm $\|u\|_{\mathcal{D}^{2,2}(\mathbb{R}^N)} := (\int_{\mathbb{R}^N} |\Delta u|^2)^{1/2}$. Let $K \in C^2(\mathbb{R}^N)$. We consider the following problem for $\varepsilon \geq 0$:

\[
(P_\varepsilon) \begin{cases}
\text{Find } u \in \mathcal{D}^{2,2}(\mathbb{R}^N) \text{ solving } \\
\Delta^2 u = (1 + \varepsilon K(x))u^{N+4} \\
u > 0
\end{cases} \text{ in } \mathbb{R}^N.
\]

We are interested in showing an exact multiplicity result for (P_ε) for all small $\varepsilon > 0$ (see Theorem 1.5 below).

The above problem is a “perturbed” version of the well-known Q-curvature problem which arises in differential geometry. More precisely, the problem is to find out if a given smooth function Q on the N-dimensional unit sphere S^N is the Q-curvature function of a metric g on S^N which is conformal to the...
standard metric g_0. This gives rise to the following problem:

$$(P) \begin{cases} \frac{\Delta^2 g_0}{v} - c_N \Delta g_0 v + d_N v = \frac{N-4}{2} Q v \frac{N+4}{N-4} \\ v > 0 \\ c_N := \frac{1}{2} (N^2 - 2 N - 4), d_N := \frac{1}{16} N (N - 4) (N^2 - 4). \end{cases}$$

The above problem has been studied extensively using the background of differential geometry; see the works [1,3,5] for the geometric context and references to other related works.

We now assume that Q is a perturbation of the constant, viz, $Q = 1 + \varepsilon \tilde{K}$ for a smooth function \tilde{K} on S^N and $\varepsilon > 0$ small. Then, applying the standard stereographic projection from S^N to \mathbb{R}^N on \tilde{K} and v (and calling them K and u respectively), it can be checked that (P) is transformed to (P_ε).

Existence of solutions to (P_ε) was done in [3] using variational methods and finite dimensional reduction techniques. To describe their result, we make the following assumptions on K:

(K1) $K \in C^2(\mathbb{R}^N)$, \(\|K\|_{L^\infty(\mathbb{R}^N)} + \|\nabla K\|_{L^\infty(\mathbb{R}^N;\mathbb{R}^N)} + \|D^2 K\|_{L^\infty(\mathbb{R}^N;\mathbb{R}^N \times \mathbb{R}^N)} < \infty. \)

(K2) (a) There exists $\rho > 0$ such that $\langle \nabla K(x), x \rangle < 0 \ \forall |x| \geq \rho,$
(b) $\langle \nabla K(x), x \rangle \in L^1(\mathbb{R}^N), \int_{\mathbb{R}^N} \langle \nabla K(x), x \rangle dx < 0.$

(K3) The set of all critical points of K, denoted by $\text{crit} (K)$, is finite.

(K4) \(\forall \xi \in \text{crit} (K), \) there exists $\beta = \beta_\xi \in (1, N)$ and $a_j \in C(\mathbb{R}^N), 1 \leq j \leq N,$ such that $A_\xi := \Sigma_j a_j(\xi) \neq 0.$ Furthermore, $K(y) = K(\eta) + \Sigma_j a_j|y - \eta|^\beta + o(|x - y|^\beta)$ as $y \to \eta$ for any η in a small neighbourhood of ξ.

(K5) $\Sigma_{A_\xi < 0} \deg_{\text{loc}}(\nabla K, \xi) \neq (-1)^N.$

From [4], we also recall the following classification results for solutions of (P_0) as well as its linearisation:

Theorem 1.1.

(i) Solutions of (P_0) form an $(N + 1)$-dimensional manifold given by

$$\mathcal{M} = \{ z_{\mu, \xi}(x) \overset{\text{def}}{=} C_N \mu \frac{N-4}{2} \left(\mu^2 + |x - \xi|^2 \right)^{\frac{4-N}{2}} : (\mu, \xi) \in \mathbb{R}^+ \times \mathbb{R}^N \}, \quad (1.1)$$

where

$$C_N := [N(N^2 - 4)(N - 4)]^{\frac{N-4}{8}}. \quad (1.1)$$

(ii) (“non-degeneracy”) Solutions of the linearisation of (P_0) form an $(N+1)$-dimensional vector space spanned by $\frac{\partial z_{\mu, \xi}}{\partial \mu}, \frac{\partial z_{\mu, \xi}}{\partial x_1}, \ldots, \frac{\partial z_{\mu, \xi}}{\partial x_N}.$

Definition 1.2. Given a set $A \subset \mathbb{R}^+ \times \mathbb{R}^N$, define $\mathcal{M}_A = \{ z_{\mu, \xi} : (\mu, \xi) \in A \}$.

Define the functions $\psi^{(i)}_{\mu, \xi}$ as follows:

$$\psi^{(0)}_{\mu, \xi} = \frac{\partial z_{\mu, \xi}}{\partial \mu}, \quad \psi^{(i)}_{\mu, \xi} = \frac{\partial z_{\mu, \xi}}{\partial x_i}, \quad i = 1, 2, \ldots, N. \quad (1.2)$$