Maximal regularity for non-autonomous evolution equations governed by forms having less regularity

EL MAATI OUHABAZ

Abstract. We consider the maximal regularity problem for non-autonomous evolution equations

\[u'(t) + A(t)u(t) = f(t), \quad t \in (0, \tau] \]
\[u(0) = u_0. \] (0.1)

Each operator $A(t)$ is associated with a sesquilinear form $a(t)$ on a Hilbert space H. We assume that these forms all have the same domain V. It is proved in Haak and Ouhabaz (Math Ann, doi:10.1007/s00208-015-1199-7, 2015) that if the forms have some regularity with respect to t (e.g., piecewise α-Hölder continuous for some $\alpha > 1/2$) then the above problem has maximal L_p-regularity for all u_0 in the real-interpolation space $(H, \mathcal{G}(A(0)))_{1-1/p,p}$. In this paper we prove that the regularity required there can be improved for a class of sesquilinear forms. The forms considered here are such that the difference $a(t; \cdot, \cdot) - a(s; \cdot, \cdot)$ is continuous on a larger space than the common domain V. We give three examples which illustrate our results.

Mathematics Subject classification. 35K90, 35K50, 35K45, 47D06.

Keywords. Maximal regularity, Sesquilinear forms, Non-autonomous evolution equations, Differential operators with boundary conditions.

1. Introduction and main results. Let H and V be real or complex Hilbert spaces such that V is densely and continuously embedded in H. We denote by V' the (anti-)dual of V and by $[\cdot | \cdot]_H$ the scalar product of H and $\langle \cdot, \cdot \rangle$ the duality pairing $V' \times V$. The latter satisfies (as usual) $\langle v, h \rangle = [v | h]_H$ whenever $v \in H$ and $h \in V$. By the standard identification of H with H', we then obtain continuous and dense embeddings $V \hookrightarrow H \approx H' \hookleftarrow V'$. We denote by $\| \cdot \|_V$ The research of the author was partially supported by the ANR project HAB, ANR-12-BS01-0013-02.
and \(\| \cdot \|_H \) the norms of \(V \) and \(H \), respectively. We shall always assume that \(H \) is separable.

We consider the non-autonomous evolution equation
\[
\begin{cases}
u'(t) + A(t) u(t) = f(t), & t \in (0, \tau] \\
u(0) = u_0,
\end{cases}
\] (P)
where each operator \(A(t) \), \(t \in [0, \tau] \), is associated with a sesquilinear form \(\mathfrak{a}(t) \). We assume that \(t \mapsto \mathfrak{a}(t; u, v) \) is measurable for all \(u, v \in V \) and

[H1] \(\text{(constant form domain)} \) \(\mathcal{D}(\mathfrak{a}(t)) = V \).

[H2] \(\text{(uniform boundedness)} \) there exists \(M > 0 \) such that for all \(t \in [0, \tau] \) and \(u, v \in V \), we have \(|\mathfrak{a}(t; u, v)| \leq M \| u \|_V \| v \|_V \).

[H3] \(\text{(uniform quasi-coercivity)} \) there exist \(\alpha_1 > 0, \delta \in \mathbb{R} \) such that for all \(t \in [0, \tau] \) and all \(u, v \in V \) we have \(\alpha_1 \| u \|_V^2 \leq \mathfrak{a}(t; u, u) + \delta \| u \|_H^2 \).

For each \(t \), we can associate with the form \(\mathfrak{a}(t; \cdot, \cdot) \) an operator \(A(t) \) defined as follows
\[
\mathcal{D}(A(t)) = \{ u \in V, \exists v \in H : \mathfrak{a}(t, u, \varphi) = [v | \varphi]_H \forall \varphi \in V \}
\]
\[
A(t)u := v.
\]

On the other hand, there exists a linear operator \(A(t) : V \to V' \) such that \(\mathfrak{a}(t; u, v) = \langle A(t)u, v \rangle \) for all \(u, v \in V \). The operator \(A(t) \) can be seen as an unbounded operator on \(V' \) with domain \(V \) and \(A(t) \) is the part of \(A(t) \) on \(H \), that is,
\[
\mathcal{D}(A(t)) = \{ u \in V, A(t)u \in H \}, \quad A(t)u = A(t)u.
\]

It is a known fact that \(-A(t)\) and \(-A(t)\) both generate holomorphic semigroups \((e^{-s A(t)})_{s \geq 0}\) and \((e^{-s A(t)})_{s \geq 0}\) on \(H \) and \(V' \), respectively. For each \(s \geq 0 \), \(e^{-s A(t)} \) is the restriction of \(e^{-s A(t)} \) to \(H \). For all this, we refer to Ouhabaz [10, Chapter 1].

The notion of maximal \(L_p \)-regularity for the above Cauchy problem is defined as follows.

Definition 1.1. Fix \(u_0 \in H \). We say that (P) has maximal \(L_p \)-regularity (in \(H \)) if for each \(f \in L_p(0, \tau; H) \) there exists a unique \(u \in W^1_p(0, \tau; H) \) such that \(u(t) \in \mathcal{D}(A(t)) \) for almost all \(t \), which satisfies (P) in the \(L_p \)-sense.

Recall that under the assumptions [H1]–[H3], J.L. Lions proved maximal \(L_2 \)-regularity in \(V' \) for all initial data \(u_0 \in H \), see e.g. [8], [12, page 112]. This means that for every \(u_0 \in H \) and \(f \in L_2(0, \tau; V') \), the equation
\[
\begin{cases}
u'(t) + A(t) u(t) = f(t) \\
u(0) = u_0
\end{cases}
\] (P')
has a unique solution \(u \in W^1_2(0, \tau; V') \cap L_2(0, \tau; V) \). It is a remarkable fact that Lions’s theorem does not require any regularity assumption (with respect to \(t \)) on the sesquilinear forms apart from measurability. Note however that maximal regularity in \(H \) differs considerably from maximal regularity in \(V' \). The fact that the forms have the same domain means that the operators \(A(t) \) have