On the Right (Left) Invertible Completions for Operator Matrices

Guojun Hai and Alatancang Chen

Abstract. Let \mathcal{H}_1 and \mathcal{H}_2 be separable Hilbert spaces, and let $A \in B(\mathcal{H}_1)$, $B \in B(\mathcal{H}_2)$ and $C \in B(\mathcal{H}_2, \mathcal{H}_1)$ be given operators. A necessary and sufficient condition is given for $(\frac{AC}{X})$ to be a right (left) invertible operator for some $X \in B(\mathcal{H}_1, \mathcal{H}_2)$. Furthermore, some related results are obtained.

Mathematics Subject Classification (2000). Primary 47A10, 47A53, 47A55.

Keywords. Invertible completions, operator matrices, right (left) invertible operator, right (left) Fredholm operator.

1. Introduction

The study of operator matrices arises naturally from the following fact: if \mathcal{H} is a Hilbert space and we decompose \mathcal{H} as a direct sum of two subspaces \mathcal{H}_1 and \mathcal{H}_2, each bounded linear operator $T: \mathcal{H} \to \mathcal{H}$ can be expressed as the operator matrix form

$$T = \begin{pmatrix} T_{11} & T_{12} \\ T_{21} & T_{22} \end{pmatrix}$$

with respect to the space decomposition, where T_{ij} is an operator from \mathcal{H}_j into \mathcal{H}_i, $i,j = 1,2$. One way to study operators is to see them as being composed of simpler operators. The operator matrices have been studied by numerous authors [4–6,8,9,12,14–19,23,25]. This paper is concerned with the right (left) invertibility of 2×2 operator matrices.

In this paper, \mathcal{H}_1 and \mathcal{H}_2 are separable Hilbert spaces. Let $B(\mathcal{H}_1, \mathcal{H}_2)$ and $K(\mathcal{H}_1, \mathcal{H}_2)$ denote the sets of bounded linear operators and compact operators from \mathcal{H}_1 into \mathcal{H}_2, respectively. When $\mathcal{H}_1 = \mathcal{H}_2$ we write $B(\mathcal{H}_1, \mathcal{H}_1) = $.

This work was completed with the support of the Specialized Research Foundation for the Doctoral Program of Higher Education (No. 20070126002), the National Natural Science Foundation of China (No. 10962004) and The Scientific Research Foundation for the Returned Overseas Chinese Scholars.
$B(\mathcal{H}_1)$. If $T \in B(\mathcal{H}_1, \mathcal{H}_2)$, we use $\mathcal{R}(T)$, $\mathcal{N}(T)$ and T^* to denote the range space, the null space and the adjoint of T. For a linear subspace $\mathcal{M} \subset \mathcal{H}_1$, its closure and orthogonal complement are denoted by $\overline{\mathcal{M}}$ and \mathcal{M}^{\perp}. Write $P_{\overline{\mathcal{M}}}$ for the orthogonal projection onto $\overline{\mathcal{M}}$ along \mathcal{M}^{\perp} and $T|_{\mathcal{M}}$ for the restriction of T to \mathcal{M}.

Let $T \in B(\mathcal{H}_1, \mathcal{H}_2)$. Recall that a linear operator T^+ from \mathcal{H}_2 into \mathcal{H}_1 is said to be the Moore–Penrose generalized inverse of T if T^+ satisfies $\mathcal{D}(T^+) = \mathcal{R}(T) \oplus \mathcal{R}(T)^{\perp}$ ($\mathcal{D}(T^+)$ denotes the domain of T^+) and the four Moore–Penrose equations:

$$TT^+T = T, \quad T^+T = I - P_{\mathcal{N}(T)},$$

$$T^+TT^+ = T^+, \quad TT^+ = P_{\overline{\mathcal{R}(T)}}|_{\mathcal{D}(T^+)}. $$

The Moore–Penrose generalized inverse T^+ is uniquely determined and is a closed linear operator. In particular, for any $y \in \mathcal{R}(T)$ we have $y = TT^+y$. From the closed graph theorem (see [24]), we know that T^+ is bounded if and only if $\mathcal{R}(T)$ is closed, and in this case, $\mathcal{D}(T^+) = \mathcal{H}_2$ (see [3,21]). The following properties of T^+ are well known (see [3,22]): If $\mathcal{R}(T)$ is closed, then

$$\mathcal{R}(T^+) = \mathcal{R}(T^*) = \mathcal{N}(T)^{\perp}, \quad \mathcal{N}(T^+) = \mathcal{N}(T^*) = \mathcal{R}(T)^{\perp}. $$

An operator $T \in B(\mathcal{H}_1, \mathcal{H}_2)$ is called a right (respectively, left) invertible operator if there exists an operator $S \in B(\mathcal{H}_2, \mathcal{H}_1)$ such that $TS = I_{\mathcal{H}_2}$ (respectively, $ST = I_{\mathcal{H}_1}$). If $T \in B(\mathcal{H}_1, \mathcal{H}_2)$ is both left invertible and right invertible, we call it invertible. It is well known [7] that T is right invertible if and only if T is surjective, i.e., $\mathcal{R}(T) = \mathcal{H}_2$. Also, T is left invertible if and only if $\|Tx\| \geq c\|x\|$ for all $x \in \mathcal{H}_1$ and some constant $c > 0$, i.e., $\mathcal{R}(T)$ is closed and $\mathcal{N}(T) = \{0\}$. The right (or defect) spectrum $\sigma_r(T)$ of $T \in B(\mathcal{H}_1)$ is defined by

$$\sigma_r(T) = \{\lambda \in \mathbb{C} : T - \lambda I \text{ is not right invertible}\},$$

whilst the left (or approximate point) spectrum $\sigma_l(T)$ of $T \in B(\mathcal{H}_1)$ is defined by

$$\sigma_l(T) = \{\lambda \in \mathbb{C} : T - \lambda I \text{ is not left invertible}\}. $$

It is evident [1,2,7] that $\sigma_l(T)$ (respectively, $\sigma_r(T)$) is a compact nonempty subset of \mathbb{C}, and $\partial(\sigma_r(T) \cup \sigma_l(T)) \subseteq \sigma_l(T) \cap \sigma_r(T)$, where we write ∂K for the topological boundary of a subset $K \subset \mathbb{C}$. We also have from [7] that $\lambda \in \sigma_l(T)$ if and only if $\lambda \in \sigma_r(T)^\ast$.

Let $T \in B(\mathcal{H}_1, \mathcal{H}_2)$, $n(T) = \dim \mathcal{N}(T)$ and $d(T) = \dim \mathcal{R}(T)^{\perp}$. If $\mathcal{R}(T)$ is closed and $n(T) < \infty$, we call T a left Fredholm operator (or upper semi-Fredholm operator), and if $\mathcal{R}(T)$ is closed and $d(T) < \infty$, then T is called a right Fredholm operator (or lower semi-Fredholm operator) (see [1,17,18,20]).

Given an arbitrary operator $T \in B(\mathcal{H}_1)$, the right essential spectrum $\sigma_{re}(T)$ is defined by

$$\sigma_{re}(T) = \{\lambda \in \mathbb{C} : T - \lambda I \text{ is not right Fredholm}\},$$

and the left essential spectrum $\sigma_{le}(T)$ is defined by

$$\sigma_{le}(T) = \{\lambda \in \mathbb{C} : T - \lambda I \text{ is not left Fredholm}\}. $$