Some Closed Range Integral Operators on Spaces of Analytic Functions

Austin Anderson

To Mary Rose

Abstract. Our main result is a characterization of g for which the operator $S_g(f)(z) = \int_0^z f'(w)g(w)\,dw$ is bounded below on the Bloch space. We point out analogous results for the Hardy space H^2 and the Bergman spaces A^p for $1 \leq p < \infty$. We also show the companion operator $T_g(f)(z) = \int_0^z f(w)g'(w)\,dw$ is never bounded below on H^2, Bloch, nor BMOA, but may be bounded below on A^p.

Mathematics Subject Classification (2010). Primary 47B38; Secondary 47G10, 30D45.

Keywords. Volterra operator, Cesaro operator, integral operator, bounded below, closed range, Bloch, Hardy, Bergman, BMOA, multiplication operator.

1. Introduction

We examine operators on Banach spaces of analytic functions on the unit disk in the complex plane. The operator T_g, with symbol $g(z)$ an analytic function on the disk, is defined by

$$T_g f(z) = \int_0^z f(w)g'(w)\,dw.$$

T_g is a generalization of the standard integral operator, which is T_g when $g(z) = z$. Letting $g(z) = \log(1/(1-z))$ gives the Cesáro operator. Discussion of the operator T_g first arose in connection with semigroups of composition operators. (see [11] for background) Characterizing the boundedness and compactness of T_g on certain spaces of analytic functions is of recent

A. Anderson was supported by NSF-DGE-0841223.
interest, as seen in [1,2,5,11], and open problems remain. T_g and its companion operator $S_g f(z) = \int_0^z f'(w)g(w) \, dw$ are related to the multiplication operator $M_g f(z) = g(z)f(z)$, since integration by parts gives

$$M_g f = f(0)g(0) + T_g f + S_g f.$$

If any two of M_g, S_g, and T_g are bounded, then so is the third. But in some situations one operator is bounded while two are unbounded. Boundedness of T_g on the Hardy and Bergman spaces and $BMOA$ is characterized in [1,2,11]. The pointwise multipliers of these and many other spaces are well known. See [12] for $BMOA$.

In this paper we examine the property of being bounded below for T_g and S_g on spaces of analytic functions. We examine aspects of the problems on Hardy and Bergman spaces, the Bloch space, and $BMOA$. In doing so we must assume the operators are bounded, and we study characterizations of the symbols for which the operators are bounded. Consideration of M_g is useful as well.

2. Preliminaries

The notation $f \lesssim g$ will mean there exists a universal constant C such that $f \leq C g$. $f \approx g$ will mean $f \lesssim g \lesssim f$.

Let D be the unit disk in the complex plane. Let $H(D)$ denote the set of analytic functions on D. For $1 \leq p < \infty$, the Hardy space H^p on D is

$$H^p = \left\{ f \in H(D) : \| f \|_p = \sup_{0 < r < 1} \left(\frac{2\pi}{0} \int |f(re^{i\theta})|^p \, d\theta \right) < \infty \right\}.$$

The space of bounded analytic functions on D is

$$H^\infty = \left\{ f \in H(D) : \| f \|_\infty = \sup_{z \in D} |f(z)| < \infty \right\}.$$

We define weighted Bergman spaces, for $\alpha > -1$,

$$A^p_\alpha = \left\{ f \in H(D) : \| f \|_{A^p_\alpha} = \int_D |f(z)|^p (1 - |z|^2)\alpha \, dA(z) < \infty \right\},$$

where $dA(z)$ refers to Lebesgue area measure on D.

The Bloch space is

$$B = \left\{ f \in H(D) : \| f \|_B = \sup_{z \in D} |f'(z)|(1 - |z|^2) < \infty \right\}.$$

Note that $\| \cdot \|_B$ is a semi-norm. The true norm accounts for functions differing by an additive constant.

A complex measure μ on D is called a (Hardy space) Carleson measure if there exists $C > 0$ such that $\mu(S(I)) \leq C |I|$ for all arcs $I \subseteq \partial D$, where $S(I) = \{ re^{i\theta} : 1 - |I| < r < 1, e^{i\theta} \in I \}$ is the Carleson rectangle associated with I, and $|I|$ is the length of I. The smallest such C is called the Carleson constant for the measure μ. Define, for $f \in H(D)$, $d\mu_f(z) =$