On mappings of Q^d to Q^d that preserve distances 1 and $\sqrt{2}$ and the Beckman-Quarles Theorem

Joseph Zaks*

Abstract. Benz proved that every mapping $f : Q^d \to Q^d$ that preserves the distances 1 and 2 is an isometry, provided $d \geq 5$. We prove that every mapping $f : Q^d \to Q^d$ that preserves the distances 1 and $\sqrt{2}$ is an isometry, provided $d \geq 5$.

Mathematics Subject Classification (2000): 51M05, 46B04.
Key words: Distance preserving mappings, isometry, Beckman-Quarles Theorem.

Let F be any subfield of the reals \mathbb{R} and let F^d denote the subspace of \mathbb{R}^d, in which all the coordinates belong to F. A mapping $f : F^d \to F^d$ is called a ρ-distance preserving mapping, for a real ρ, if $\|x - y\| = \rho$ implies $\|f(x) - f(y)\| = \rho$. The Beckman-Quarles Theorem [1, 3, 9, 10, 15] states that every unit-distance preserving mapping $f : \mathbb{R}^d \to \mathbb{R}^d$ is an isometry, provided $d \geq 2$. A few papers [7, 8, 11, 14, 15] treat the rational analogues of this theorem, i.e., treating, for some values of d, the property “Every unit-distance preserving mapping $f : Q^d \to Q^d$ is an isometry”. This statement is false for $d = 2, 3,$ and 4 [4], it is true for all even $d \geq 6$ [7] and it is true for all odd d of the form $2n^2 - 1, n \geq 3$ [15]. One tool used in these results is Benz’s theorem ([4], see also [8]), which states that every mapping $f : Q^d \to Q^d$ that preserves the distances 1 and 2 is an isometry, provided $d \geq 5$. The purpose of this note is to give a Beckman-Quarles type theorem and to extend Benzs’s result, as follows.

THEOREM 1. If a mapping $f : Q^d \to Q^d$ preserves the distance $\sqrt{2}$, then f is an isometry, provided d is even and $d \geq 6$, or $d = 4k^2 - 1$, for $k \geq 2$.

THEOREM 2. If a mapping $f : Q^d \to Q^d$ preserves the distance $\sqrt{2}$, then f preserves the distance 2, provided $d \geq 5$.

THEOREM 3. If a mapping $f : Q^d \to Q^d$ preserves the distances 1 and $\sqrt{2}$, then f is an isometry, provided $d \geq 5$.

*This paper was written while the author was visiting Professor Gert Sabidussi at the University of Montreal. This research was supported in part by G. Sabidussi’s NSERC research grant #7315. The author wishes to thank G. Sabidussi for his warm hospitality.
Let $F(d, \rho)$ denote the graph whose vertices are the points of P^d, and where two vertices x and y are connected by an edge if, and only if, $\|x - y\| = \rho$. Let $\omega(G)$ denote the clique number of the graph G.

We need the following Lemmas.

LEMMA 1. The value of $\omega(Q(d, \sqrt{2}))$ is given by:

$$\omega(Q(d, \sqrt{2})) = \begin{cases} d + 1 & \text{if } d + 1 \text{ is a square} \\ d & \text{otherwise} \end{cases}$$

Proof. Obviously $\omega(Q(d, \sqrt{2})) \leq d + 1$, since $\omega(F(d, \rho)) \leq d + 1$ holds for all F and all ρ. Let e_1, e_2, \ldots, e_d be the rows of the unit matrix I of order d; they form a set of d points in Q^d of mutual distance $\sqrt{2}$. It follows that $\omega(Q(d, \sqrt{2})) \geq d$. The only two possibilities for an additional point in Q^d to be at distance $\sqrt{2}$ to these d points is the point $X = (x, x, \ldots, x)$ for $x = [1 + \sqrt{2d+1}]$. Therefore, if $\omega(Q(d, \sqrt{2})) = d + 1$, then $d + 1$ is a square. The last implication follows also from the Euler-Kelly-Menger formula, which will be mentioned at the end of the paper. This completes the proof of Lemma 1.

For an even d, let $h_d : Q^d \to Q^d$ be the mapping given by the block-matrix H of size d by d, as given by the following form:

$$H = \begin{pmatrix} T & 0 & \cdots & 0 \\ 0 & T & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & T \end{pmatrix}, \text{ where } T = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{1}{2} \end{pmatrix}.$$

The mapping h_d is a rational mapping that shrinks Q^d by the factor $\frac{1}{\sqrt{2}}$, while the mapping h_d^{-1} is a rational mapping that expands Q^d by the factor $\sqrt{2}$. \square

Proof of Theorem 1. Let $f : Q^d \to Q^d$ be a $\sqrt{2}$-distance preserving mapping. If d is even and $d \geq 6$, then the mapping $h_d \circ f \circ h_d^{-1} : Q^d \to Q^d$ is a unit-distance preserving mapping, hence it is a congruence by [7]. Therefore the mapping $h_d \circ f \circ h_d^{-1} \circ h_d = f$ is also an isometry. If $d = 4k^2 - 1$, for $k \geq 2$, then $d + 1 = (2k)^2$, hence the space Q^d contains, by Lemma 1, a d-simplex of edge length $\sqrt{2}$. By using arguments, similar to those that appeared in the proof of the Beckman-Quarles Theorem, given in [15], it follows that the mapping f, which preserves the distances $\sqrt{2}$, is an isometry. This completes the proof of Theorem 1.

COROLLARY 1 (see also Corollary 2 in [7]). If t is the sum of two squares of rational numbers, then every mapping $f : Q^d \to Q^d$ that preserves the distances \sqrt{t} is an isometry, provided d is even and $d \geq 6$.