On α-conformal equivalence of statistical submanifolds

Keiko Uohashi

Abstract. In this paper, we show a procedure to realize a statistical manifold, which is α-conformally equivalent to a manifold with an α-transitively flat connection, as a statistical submanifold.

Mathematics Subject Classification (2000): 53A15.
Key words: α-connections, α-transitively flat connections, α-conformal equivalence.

1. Introduction

Statistical manifolds are studied in terms of information geometry. The theory of α-connections of statistical manifolds plays an important role especially on statistical inference. In addition, considering conformal transformation into α-connections, Okamoto, Amari and Takeuchi obtain asymptotic theory of sequential estimation [3]. Kurose defined α-conformal equivalence and α-conformal flatness of statistical manifolds [2]. In our previous paper, we gave an example for a 1-conformally flat statistical submanifold of a flat statistical manifold, using a Hessian domain [4] [5]. In this paper, we show a procedure to realize a statistical manifold, which is α-conformally equivalent to a manifold with an α-transitively flat connection, as a statistical submanifold. An α-transitively flat connection is one of α-connections.

2. α-transitively flat connections on statistical manifolds

For a torsion-free affine connection ∇ and a pseudo-Riemannian metric h on a manifold N, the triple (N, ∇, h) is called a statistical manifold if ∇h is symmetric. If the curvature tensor R of ∇ vanishes, (N, ∇, h) is said to be flat.

For a statistical manifold (N, ∇, h), let ∇' be an affine connection on N such that

$$Xh(Y, Z) = h(\nabla_X Y, Z) + h(Y, \nabla'_X Z) \quad \text{for } X, Y, Z \in \mathcal{X}(N),$$

where $\mathcal{X}(N)$ is the set of all tangent vector fields on N. The affine connection ∇' is torsion free, and $\nabla' h$ symmetric. Then ∇' is called the dual connection of ∇, the triple (N, ∇', h) the dual statistical manifold of (N, ∇, h), and (∇, ∇', h) the dualistic structure on N. The curvature tensor of ∇' vanishes if and only if that of ∇ does, and then (∇, ∇', h) is called the dually flat structure.
Let N be a manifold with a dualistic structure (∇, ∇', h). For a real number α, an affine connection defined by
\[
\nabla(\alpha) := \frac{1 + \alpha}{2} \nabla + \frac{1 - \alpha}{2} \nabla'
\]
is called an α-connection of (N, ∇, h). The triple $(N, \nabla(\alpha), h)$ is also a statistical manifold, and $\nabla(-\alpha)$ the dual connection of $\nabla(\alpha)$. The 1-connection, the (-1)-connection and the 0-connection coincide with ∇, ∇' and Levi-Civita connection of (N, h), respectively. An α-connection is not always flat [1].

If (N, ∇, h) is a flat statistical manifold, we call $\nabla(\alpha)$ an α-transitively flat connection of (N, ∇, h). An α-transitively flat connection is not always flat.

For $\alpha \in \mathbb{R}$, statistical manifolds (N, ∇, h) and $(\bar{N}, \bar{\nabla}, \bar{h})$ are said to be α-conformally equivalent if there exists a function ϕ on N such that
\[
\bar{h}(X, Y) = e^{\phi} h(X, Y),
\]
\[
h(\bar{\nabla}_X Y, Z) = h(\nabla_X Y, Z) - \frac{1 + \alpha}{2} d\phi(Z) h(X, Y)
+ \frac{1 - \alpha}{2} \{ d\phi(X) h(Y, Z) + d\phi(Y) h(X, Z) \}
\]
for $X, Y, Z \in \mathcal{X}(N)$. Two statistical manifolds (N, ∇, h) and $(\bar{N}, \bar{\nabla}, \bar{h})$ are α-conformally equivalent if and only if the dual statistical manifolds (N, ∇', h) and $(\bar{N}, \bar{\nabla}', \bar{h})$ are $(-\alpha)$-conformally equivalent. A statistical manifold (N, ∇, h) is called α-conformally flat if (N, ∇, h) is locally α-conformally equivalent to a flat statistical manifold [2].

3. α-transitively flat connections and α-conformal equivalence

We relate an α-transitively flat connection of a flat statistical manifold with an α-conformal equivalence of its statistical submanifold. Statistical submanifolds are defined in [4] and [6].

LEMMA 3.1. Let (N, ∇, h) be a flat statistical manifold, and (M, D, g) a 1-conformally flat statistical submanifold realized in (N, ∇, h). Let M_0 be a simply connected open set of M. If (M, D, g) is 1-conformally equivalent to a flat statistical manifold (M_0, \bar{D}, \bar{g}), $(M_0, D(\alpha), g)$ is α-conformally equivalent to $(M_0, \bar{D}(\alpha), \bar{g})$, where $D(\alpha)$ the induced connection on M_0 by an α-transitively flat connection $\nabla(\alpha)$ of (N, ∇, h), and $\bar{D}(\alpha)$ an α-transitively flat connection of (M_0, \bar{D}, \bar{g}).

Proof. Let D' and \bar{D}' be the dual connection of D and \bar{D}, respectively. Since $D(\alpha)$ is induced by $\nabla(\alpha)$,
\[
D(\alpha) = \frac{1 + \alpha}{2} D + \frac{1 - \alpha}{2} D' \quad \text{on } M_0
\]