Geologic Setting, Field Survey and Modeling of the Chimbote, Northern Peru, Tsunami of 21 February 1996

JOANNE BOURGEOIS,1 CATHERINE PETROFF,2 HARRY YEH,2 VASILY TITOV,3,4 COSTAS E. SYNOLAKIS,4 BOYD BENSON,5 JULIO KUROIWA,6 JAMES LANDER,7 and EDMUNDO NORABUENA8

Abstract—Whereas the coast of Peru south of 10°S is historically accustomed to tsunamigenic earthquakes, the subduction zone north of 10°S has been relatively quiet. On 21 February 1996 at 21:51 GMT (07:51 local time) a large, tsunamigenic earthquake (Harvard estimate \(M_w 7.5 \)) struck at 9.6°S, 79.6°W, approximately 130 km off the northern coast of Peru, north of the intersection of the Mendanha fracture zone with the Peru–Chile trench. The likely mechanism inferred from seismic data is a low-angle thrust consistent with subduction of the Nazca Plate beneath the South American plate, with relatively slow rupture characteristics. Approximately one hour after the main shock, a damaging tsunami reached the Peruvian coast, resulting in twelve deaths. We report survey measurements, from 7.7°S to 11°S, on maximum runup (2–5 m, between 8 and 10°S), maximum inundation distances, which exceeded 500 m, and tsunami sediment deposition patterns. Observations and numerical simulations show that the hydrodynamic characteristics of this event resemble those of the 1992 Nicaragua tsunami. Differences in climate, vegetation and population make these two tsunamis seem more different than they were.

This 1996 Chimbote event was the first large (\(M_w > 7 \)) subduction-zone (interplate) earthquake between about 8 and 10°S, in Peru, since the 17th century, and bears resemblance to the 1960 (\(M_w 7.6 \)) event at 6.8°S. Together these two events are apparently the only large subduction-zone earthquakes in northern Peru since 1619 (est. latitude 8°S, est. \(M_w 7.8 \)); these two tsunamis also each produced more fatalities than any other tsunami in Peru since the 18th century. We concur with PELAYO and WIENS (1990, 1992) that this subduction zone, in northern Peru, resembles others where the subduction zone is only weakly coupled, and convergence is largely aseismic. Subduction-zone earthquakes, when they occur, are slow, commonly shallow, and originate far from shore (near the tip of the wedge). Thus they are weakly felt, and the ensuing tsunamis are unanticipated by local populations. Although perhaps a borderline case, the Chimbote tsunami clearly is another wake-up example of a “tsunami earthquake.”

Key words: Tsunami, subduction zone, seismicity, Peru seismicity, tsunami earthquake, tsunami sediments, tsunami modeling, Peru geology.

1 Department of Geological Sciences, University of Washington, Seattle, WA 98195-1310, U.S.A.
2 Department of Civil Engineering, University of Washington, Seattle, WA 98195-2700, U.S.A.
3 Current Address: NOAA:PMEL, JISAO:University of Washington, Seattle, WA 98115, U.S.A.
4 Department of Civil Engineering, University of Southern California, Los Angeles, CA 90089, U.S.A.
5 GeoEngineers, Redmond, WA 98052, U.S.A.
6 CISMID, Universidad Nacional de Ingenieria, Lima 27, Peru.
7 CIRES, University of Colorado, Box 4409, Boulder, CO 80309, U.S.A.
8 Instituto Geofisico del Peru, Apartado 13-0207, Lima, Peru.
Peru has a written history of subduction-zone earthquakes and locally generated tsunamis retrospectively to the 16th century (elaborated in the following section), although the area of the Peru coast affected by the 1996 Chimbote subduction-zone earthquake and tsunami has a minimal historical record of such events. Beneath the coast of Peru the Nazca Plate is subducted at a moderately oblique angle (convergence rate estimated to be 7–8 cm/yr by various techniques; e.g., see Norabuena et al. (1998); see also Spence et al., Swenson and Beck, this volume) beneath the South American plate, forming the Peru–Chile trench. Oligocene (30 m.y. old) oceanic crust is being subducted beneath northern Peru, while Eocene-age (40 m.y.) crust is being subducted south of the Mendaña fracture zone, which intersects the trench at about 10–11°S (Fig. 1). Onshore gravity measurements indicate that the angle of the subducting slab, bounded by the Carnegie Ridge to the north (off Ecuador) and the Nazca Ridge to the south (Fig. 1), is particularly shallow (Dewey and Lamb, 1992); there is a paucity of onshore volcanism associated with this zone.

Figure 1
Maps of the Peruvian coastal region and the vicinity of Chimbote. The epicenter of the main shock is marked with a star; aftershocks are marked with an O. Main shock and aftershock locations (21 February to 6 April 1996) from the U.S. National Earthquake Information Center (USGS).