Meromorphic Functions That Share One Finite Value CM or IM with Their k-th Derivative

Amer H. H. Al-Khaladi

Abstract. In this paper we shall prove that if a non-constant meromorphic f and its k-th derivative $f^{(k)}$ ($k \geq 2$) share the value $a \neq 0, \infty$ CM (IM) and if $\tilde{N}(r, \frac{1}{f}) = S(r, f) \left(\tilde{N} \left(r, \frac{1}{f} \right) + \tilde{N} \left(r, \frac{1}{f_{\tilde{N}}} \right) = S(r, f) \right)$, then $f \equiv f^{(k)}$. These results extend the results in Al-Khaladi (J Al-Anbar Univ Pure Sci 3:69–73, 2009).

Mathematics Subject Classification (2000). 30D35.

Keywords. Nevanlinna theory, uniqueness theorem, share CM or IM, meromorphic function.

1. Introduction and Results

In this paper the term “meromorphic” will always mean meromorphic in the complex plane. We use the standard notations and results of Nevanlinna theory (see [5] or [6], for example). In particular, $S(r, f)$ denotes any quantity satisfying $S(r, f) = o(T(r, f))$ as $r \to \infty$ except possibly for a set E of r of finite linear measure. We say that two non-constant meromorphic functions f and g share a value a IM (ignoring multiplicities), if f and g have the same a-points. If f and g have the same a-points with the same multiplicities, we say that f and g share the value a CM (counting multiplicities). Let k be a positive integer, we denote by $N_k \left(r, \frac{1}{f-a} \right)$ the counting function of a-points of f with multiplicity $\leq k$ and by $N_{(k+1)}(r, \frac{1}{f-a})$ the counting function of a-points of f with multiplicity $> k$, where each a-point is counted according to its multiplicity. Similarly we define $\tilde{N}_k \left(r, \frac{1}{f-a} \right)$ and $\tilde{N}_{(k+1)} \left(r, \frac{1}{f-a} \right)$ where in counting the a-points of f we ignore the multiplicities.
In [4] Gundersen proved the following theorem:

Theorem A. Let \(f \) be a non-constant meromorphic function. If \(f \) and \(f' \) share two distinct values \(0, a \neq \infty \) CM, then \(f \equiv f' \).

In [1] the author considered the case that \(f \) and \(f' \) share only one value and proved the following theorems:

Theorem B. Let \(f \) be a non-constant meromorphic function. If \(f \) and \(f' \) share the value \(a \neq 0, \infty \) CM, and if \(N\left(r, \frac{1}{f}\right) = S(r, f) \), then either \(f \equiv f' \) or

\[
f(z) = \frac{a(z - c)}{1 + Ae^{-z}},
\]

where \(A \neq 0 \) and \(c \) are constants.

Theorem C. Let \(f \) be a non-constant meromorphic function. If \(f \) and \(f' \) share the value \(a \neq 0, \infty \) IM, and if \(N\left(r, \frac{1}{f}\right) + N\left(r, \frac{1}{f'}\right) = S(r, f) \), then either \(f \equiv f' \) or

\[
f(z) = \frac{2a}{1 - Ae^{-2z}},
\]

where \(A \) is a nonzero constant.

It is asked naturally whether \(f' \) in Theorems B and C can be replaced by \(f^{(k)} \) \((k \geq 2)\). In this paper, we will give a positive answer to this question. Indeed, we shall proved the following theorems:

Theorem 1. Let \(f \) be a non-constant meromorphic function. If \(f \) and \(f^{(k)} \) \((k \geq 2)\) share the value \(a \neq 0, \infty \) CM, and if \(N\left(r, \frac{1}{f}\right) = S(r, f) \), then \(f \equiv f^{(k)} \).

Theorem 2. Let \(f \) be a non-constant meromorphic function. If \(f \) and \(f^{(k)} \) \((k \geq 2)\) share the value \(a \neq 0, \infty \) IM, and if \(N\left(r, \frac{1}{f}\right) + N\left(r, \frac{1}{f^{(k)}}\right) = S(r, f) \), then \(f \equiv f^{(k)} \).

2. Lemmas

Lemma 1. [2] Let \(k \) be a positive integer, and let \(f \) be a meromorphic function such that \(f^{(k)} \) is not constant. Then either

\[
\left(\frac{f^{(k+1)}}{f^{(k)}}\right)^{k+1} = c\left(\frac{f^{(k)}}{f} - \lambda\right)^{k+2},
\]

for some nonzero constant \(c \), or

\[
kN_{1j}(r, f) \leq N_{(2, f, f^{(k)})}(r, \frac{1}{f^{(k+1)}}) + N\left(r, \frac{1}{f^{(k+1)}}\right) + S(r, f),
\]

where \(\lambda \) is a constant.