Uniqueness of diffusion operators and capacity estimates

DEREK W. ROBINSON

Abstract. Let \(\Omega \) be a connected open subset of \(\mathbb{R}^d \). We analyse \(L_1 \)-uniqueness of real second-order partial differential operators \(H = -\sum_{k,l=1}^d \partial_k c_{kl} \partial_l \) and \(K = H + \sum_{k=1}^d c_k \partial_k + c_0 \) on \(\Omega \) where \(c_{kl} = c_{lk} \in W^{1,\infty}_{\text{loc}}(\Omega) \), \(c_k \in L_{\infty,\text{loc}}(\Omega) \), \(c_0 \in L_{2,\text{loc}}(\Omega) \) and \(C(x) = (c_{kl}(x)) > 0 \) for all \(x \in \Omega \). Boundedness properties of the coefficients are expressed indirectly in terms of the balls \(B_\eta \) existent in \([16]\) for bounded coefficients and their Lebesgue measure \(|B(r)|\). First, we establish that if the balls \(B(r) \) are bounded, the Täcklind condition \(\int_\mathbb{R}^d dr r (\log |B(r)|)^{-1} = \infty \) is satisfied for all large \(R \) and \(H \) is Markov unique then \(H \) is \(L_1 \)-unique. If, in addition, \(C(x) \geq \kappa (c^T \otimes c)(x) \) for some \(\kappa > 0 \) and almost all \(x \in \Omega \), \(\text{div} \, c \in L_{\infty,\text{loc}}(\Omega) \) is upper semi-bounded and \(c_0 \) is lower semi-bounded, then \(K \) is also \(L_1 \)-unique. Secondly, if the \(c_{kl} \) extend continuously to functions which are locally bounded on \(\partial \Omega \) and if the balls \(B(r) \) are bounded, we characterize Markov uniqueness of \(H \) in terms of local capacity estimates and boundary capacity estimates. For example, \(H \) is Markov unique if and only if for each bounded subset \(A \) of \(\Omega \) there exist \(\eta_n \in C_{\infty}^1(\Omega) \) satisfying \(\lim_{n \to \infty} \| A \, \Gamma(\eta_n) \|_1 = 0 \), where \(\Gamma(\eta_n) = \sum_{k,l=1}^d c_{kl} (\partial_k \eta_n)(\partial_l \eta_n) \), and \(\lim_{n \to \infty} \| A (\eta_n - \eta_0) \, \varphi \|_2 = 0 \) for each \(\varphi \in L_2(\Omega) \) or if and only if \(\text{cap}(\partial \Omega) = 0 \).

1. Introduction

Let \(\Omega \) be a connected open subset of \(\mathbb{R}^d \) and define the second-order divergence-form operator \(H \) on the domain \(D(H) = C_\infty^1(\Omega) \) by

\[
H = -\sum_{k,l=1}^d \partial_k c_{kl} \partial_l
\]

where the \(c_{kl} = c_{lk} \) are real-valued functions in \(W^{1,\infty}_{\text{loc}}(\Omega) \), and the matrix \(C = (c_{kl}) \) is strictly elliptic, that is, \(C(x) > 0 \) for all \(x \in \Omega \). It is possible that the coefficients can have degeneracies as \(x \to \partial \Omega \), the boundary of \(\Omega \) or as \(x \to \infty \).

The operator \(H \) is defined to be \(L_1 \)-unique if it has a unique \(L_1 \)-closed extension which generates a strongly continuous semigroup on \(L_1(\Omega) \). Alternatively, it is defined to be Markov unique if it has a unique \(L_2 \)-closed extension which generates a submarkovian semigroup on the spaces \(L_p(\Omega) \). Markov uniqueness is a direct consequence of \(L_1 \)-uniqueness since distinct submarkovian extensions give distinct \(L_1 \)-extensions. But the converse implication is not valid in general. The converse was established in [16] for bounded coefficients \(c_{kl} \), and the proof was extended in [17].
to allow a growth of the coefficients at infinity. The converse can, however, fail if the coefficients grow too rapidly (see [17] Section 4.1). The principal aim of the current paper is to establish the equivalence of Markov uniqueness and L_1-uniqueness of H from properties of the Riemannian geometry defined by the metric C^{-1} which give, implicitly, optimal growth bounds on the coefficients.

Our arguments extend to non-symmetric operators

$$K = H + \sum_{k=1}^{d} c_k \frac{\partial}{\partial x_k} + c_0$$

(2)

with the real-valued lower-order coefficients satisfying the following three conditions:

1. $c_0 \in L_{2,\text{loc}}(\Omega)$ is lower semi-bounded,
2. $c_k \in L_{\infty,\text{loc}}(\Omega)$ for each $k = 1, \ldots, d$, $\text{div} \, c \in L_{\infty,\text{loc}}(\Omega)$ and $\text{div} \, c$ is upper semi-bounded,
3. there is a $\kappa > 0$ such that $C(x) \geq \kappa (c^T \otimes c)(x)$ for almost all $x \in \Omega$.

(3)

In the second condition, $c = (c_1, \ldots, c_d)$ and $\text{div} \, c = \sum_{k=1}^{d} \partial_k c_k$ with the partial derivatives understood in the distributional sense. The third condition in (3) is understood in the sense of matrix ordering, that is, $(c_{kl}(x)) \geq \kappa (c_k(x)c_l(x))$ for almost all $x \in \Omega$. These conditions together with the general theory of accretive sectorial forms are sufficient to ensure that K has an extension which generates a strongly continuous semigroup on $L_1(\Omega)$ (see Sect. 2). As in the symmetric case, K is defined to be L_1-unique if it has a unique such extension.

The Riemannian distance $d(\cdot ; \cdot)$ corresponding to the metric C^{-1} can be defined in various equivalent ways but in particular by

$$d(x ; y) = \sup\{\psi(x) - \psi(y) : \psi \in W^{1,\infty}_{\text{loc}}(\Omega), \Gamma(\psi) \leq 1\}$$

(4)

for all $x, y \in \Omega$ where Γ, the carré du champ of H, denotes the positive map

$$\varphi \in W^{1,2}_{\text{loc}}(\Omega) \mapsto \Gamma(\varphi) = \sum_{k,l=1}^{d} c_{kl}(\partial_k \varphi)(\partial_l \varphi) \in L_{1,\text{loc}}(\Omega).$$

(5)

Since Ω is connected and $C > 0$, it follows that $d(x ; y)$ is finite for all $x, y \in \Omega$ but one can have $d(x ; y) \to \infty$ as x, y tends to the boundary $\partial \Omega$. Throughout the sequel, we choose coordinates such that $0 \in \Omega$ and denote the Riemannian distance to the origin by ρ. Thus, $\rho(x) = d(x ; 0)$ for all $x \in \Omega$. The Riemannian ball of radius $r > 0$ centred at 0 is then defined by $B(r) = \{x \in \Omega : \rho(x) < r\}$, and its volume (Lebesgue measure) is denoted by $|B(r)|$.

There are two properties of the balls $B(r)$ which are important in our analysis. First, the balls $B(r)$ must be bounded for all $r > 0$. It follows straightforwardly that this is equivalent to the condition that $\rho(x) \to \infty$ as $x \to \infty$, that is, as x leaves any