ON REDUCTIVE AUTOMORPHISM GROUPS OF
REGULAR EMBEDDINGS

GUIDO PEZZINI*

Departement Mathematik
Friedrich–Alexander–Universität
Erlangen–Nürnberg
Cauerstraße 11
91058 Erlangen, Germany
pezzini@math.fau.de

Abstract. Let G be a connected reductive complex algebraic group acting on a smooth complete complex algebraic variety X. We assume that X is a regular embedding, a condition satisfied in particular by smooth toric varieties and flag varieties. For any set \mathcal{D} of G-stable prime divisors, we study the action on X of the group $\text{Aut}^\circ(X, \mathcal{D})$, the connected automorphism group of X stabilizing all elements of \mathcal{D}. We determine a Levi subgroup $A(X, \mathcal{D})$ of $\text{Aut}^\circ(X, \mathcal{D})$, and also relevant invariants of X as a spherical $A(X, \mathcal{D})$-variety. As a byproduct, we obtain a complete description of the inclusion relation between closures of $A(X, \mathcal{D})$-orbits on X.

1. Introduction

In the 1970s Michel Demazure described the connected automorphism groups of two distinguished classes of algebraic varieties equipped with the action of a connected reductive group G: complete homogeneous spaces (see [De77]), and smooth complete toric varieties (see [De70]).

These two classes of G-varieties admit a common generalization: the regular embeddings, here also called G-regular embeddings, defined independently in [BDP90] and [Gi89]. With the additional assumption of completeness, Frédéric Bien and Michel Brion showed that these varieties form a relevant class of spherical varieties, which are by definition normal G-varieties with a dense orbit of a Borel subgroup of G.

The goal of this paper is to study the connected automorphism group $\text{Aut}^\circ(X)$ of a complete regular embedding X. More precisely, we are interested in the group $\text{Aut}^\circ(X, \mathcal{D})$, where \mathcal{D} is any set of G-stable prime divisors of X, and $\text{Aut}^\circ(X, \mathcal{D})$ is the connected automorphism group of X stabilizing all elements of \mathcal{D}.

Our results are divided into several steps according to additional hypotheses on \mathcal{D} and on G, and in each step we accomplish two goals. The first one is to describe
a Levi subgroup $A(X, D)$ of $\text{Aut}^\circ(X, D)$, based on the knowledge of discrete invariants associated with the G-action of X. These invariants come from the theory of spherical varieties, and are: the group $\Delta_G(X)$ of B-eigenvalues of B-eigenvectors of $C(X)$, the set of spherical roots $\Sigma_G(X)$ of X (see Definition 2.4), the set $\Delta_G(X)$ of B-stable but not G-stable prime divisors of X, and the stabilizer $P_G(X)$ of the open B-orbit of X. The last invariant is the fan $\mathcal{F}_G(X)$, a collection of strictly convex polyhedral cones in the vector space $\text{Hom}_\mathbb{Z}(\Delta_G(X), \mathbb{Q})$ (see Definition 2.3). The fan determines X uniquely among the complete regular embeddings having the same open G-orbit, generalizing the fan associated with a toric variety. It also provides a combinatorial description of the G-orbits of X and of the inclusion relation between G-orbit closures (see [Kn91]).

Now X is a spherical variety also under the action of $A(X, D)$, and our second goal is to determine the above invariants of X with respect to the action of $A(X, D)$. In particular, this provides a combinatorial description of the $A(X, D)$-orbits on X.

Our approach is based on the analysis of a spherical variety X canonically associated with X and equipped with a canonical G-equivariant map $X \to X$. The variety X, defined in Section 3, is obtained from X using a procedure called wonderful closure, which is closely related to the well-known construction of the spherical closure of a generic stabilizer of a spherical variety. We introduce the wonderful closure because it turns out to give much more direct information on the automorphisms of X than the spherical closure. On the other hand, wonderful varieties such as X (see Definition 3.3) play a central role in the theory of spherical varieties (see, e.g., [Lu01]), and their automorphism groups have already been studied in [Br07] and [Pe09].

Our study of the group $\text{Aut}^\circ(X, D)$ proceeds by “successive approximation” with a sequence of subgroups that starts with elements very closely related to $\text{Aut}^\circ(X)$. More precisely, we consider the filtration

$$\text{Aut}^\circ(X, \partial X) \subseteq \text{Aut}^\circ(X, D \cup (\partial X)^\ell) \subseteq \text{Aut}^\circ(X, D),$$

where we denote by ∂X the set of all G-stable prime divisors of X and by $(\partial X)^\ell$ the subset of G-invariant prime divisors mapping surjectively onto X.

The group $\text{Aut}^\circ(X, \partial X)$ is also the connected group of automorphisms stabilizing all G-orbits, and is the subject of Section 4. This group is reductive after [Br07] and X is regular under its action; moreover, $\text{Aut}^\circ(X, \partial X)$ is equal to $\text{Aut}^\circ(X, \partial X)$ up to central isogeny and up to a torus factor. We recall that $\text{Aut}^\circ(X, D)$ for any $D \subseteq \partial X$ is reductive, and known after [Pe09].

After providing some technical results relating the automorphisms of X and X in Sections 5 and 6, we devote Section 7 to $\text{Aut}^\circ(X, D \cup (\partial X)^\ell)$. We show that this group is again reductive: it is equal to $\text{Aut}^\circ(X, D \cup (\partial X)^\ell)$ up to central isogeny and up to a torus factor, where $D \subseteq \partial X$ is now the set of the images $\pi(D) \in \partial X$ such that $D \in \partial X$ is stable under $\text{Aut}^\circ(X, D \cup (\partial X)^\ell)$.

This is the most technically involved part of the paper, and we use an indirect approach. First we analyze how the invariants of X behave whenever $\text{Aut}^\circ(X, D \cup (\partial X)^\ell)$ is strictly bigger than $\text{Aut}^\circ(X, \partial X)$. Under this hypothesis the fan $\mathcal{F}_G(X)$ has a particularly nice structure and is essentially determined by