LOWER BOUNDS FOR THE MULTIPlicative COMPLEXITY OF MATRIX MULTIPLICATION

MARKUS BLÄSER

Abstract. We prove a lower bound of \(km + mn + k - m + n - 3 \) for the multiplicative complexity of the multiplication of \(k \times m \)-matrices with \(m \times n \)-matrices using the substitution method.

Key words. Matrix multiplication, multiplicative complexity, lower bound, substitution method

Subject classifications. 68Q20, 68Q25.

1. Introduction

In this work we prove a lower bound for the multiplicative complexity of the multiplication of \(k \times m \)-matrices with \(m \times n \)-matrices. Roughly speaking, our problem is the following: Given two matrices

\[
X = \begin{pmatrix}
x_{1,1} & x_{1,2} & \cdots & x_{1,m} \\
x_{2,1} & x_{2,2} & \cdots & x_{2,m} \\
\vdots & \vdots & & \vdots \\
x_{k,1} & x_{k,2} & \cdots & x_{k,m}
\end{pmatrix}, \quad Y = \begin{pmatrix}
y_{1,1} & y_{1,2} & \cdots & y_{1,n} \\
y_{2,1} & y_{2,2} & \cdots & y_{2,n} \\
\vdots & \vdots & & \vdots \\
y_{m,1} & y_{m,2} & \cdots & y_{m,n}
\end{pmatrix}
\]

with indeterminates \(x = \{x_{1,1}, \ldots, x_{k,m}\} \) and \(y = \{y_{1,1}, \ldots, y_{m,n}\} \) over a given field \(F \), how many multiplications are necessary to compute the product \(XY \), i.e., the bilinear forms

\[
f_{k,\nu} = \sum_{\mu=1}^{m} x_{\kappa,\mu} y_{\mu,\nu}, \quad 1 \leq \kappa \leq k, \ 1 \leq \nu \leq n.
\]

More precisely, we want to know how many products

\[
p_{\lambda} = u_{\lambda}(x, y)v_{\lambda}(x, y), \quad 1 \leq \lambda \leq l,
\]
of linear forms \(u_\lambda, v_\lambda \in F[x, y] \) are necessary such that every \(f_{\kappa,\nu} \) can be written as

\[
f_{\kappa,\nu} = \sum_{\lambda=1}^{l} \omega_{\kappa,\nu,\lambda} p_\lambda \quad \text{with scalars } \omega_{\kappa,\nu,\lambda} \in F.
\]

The best lower bound so far is due to Lafon & Winograd (1978). They show that \(km + mn - m + n - 1 \) multiplications of the above form are necessary to compute the product of a \(k \times m \)-matrix with an \(m \times n \)-matrix, if \(k \geq 2 \).

Their main tool for proving this bound is the so-called substitution method introduced by Pan (1966). As a second tool they use the so-called sandwiching to normalize the products \(p_\lambda \) in a certain way.

Using a result from algebraic geometry, we conclude that the products \(p_\lambda \) can be further normalized and prove that \(km + mn + k - m + n - 3 \) multiplications are necessary to compute the product of a \(k \times m \)-matrix with an \(m \times n \)-matrix, if \(n \geq k \geq 2 \).

2. Matrix multiplication and complexity

To fix the model of computation, let \(F \) be a field and let \(\mathbf{x} = \{x_1, \ldots, x_k\} \) be a set of indeterminates over \(F \). If \(G = \{g_1, \ldots, g_n\} \subseteq F(\mathbf{x}) \), then the multiplicative complexity of \(G \) is the minimal number of non-scalar multiplications and divisions to compute all rational functions in \(G \). If we only consider sets of quadratic forms and restrict ourselves to infinite fields, then, according to Strassen (1973), we may use a restricted definition of multiplicative complexity:

Definition 2.1. Let \(F \) be an infinite field, \(\mathbf{x} = \{x_1, \ldots, x_k\} \) a set of indeterminates over \(F \), and \(Q = \{q_1, \ldots, q_n\} \subseteq F[\mathbf{x}] \), a set of quadratic forms in \(\mathbf{x} \).

1. A sequence \(\beta = (u_1, v_1, \ldots; u_l, v_l) \), such that the \(u_\lambda, v_\lambda \in F[\mathbf{x}] \) are linear forms in \(\mathbf{x} \), is called a quadratic computation of length \(\ell(\beta) := l \) for \(Q \) over \(F \), if there are scalars \(\omega_{\nu,\lambda} \in F \) such that

\[
q_\nu(\mathbf{x}) = \sum_{\lambda=1}^{l} \omega_{\nu,\lambda} u_\lambda(\mathbf{x}) v_\lambda(\mathbf{x}) \quad \text{for all } 1 \leq \nu \leq n.
\]

2. The length of a shortest quadratic computation for \(Q \) over \(F \) is called the multiplicative complexity of \(Q \) over \(F \) and is denoted by \(C_F(Q) \).