COLLAPSING CONSTRUCTION WITH NILPOTENT STRUCTURES

Qingsong Cai and Xiaochun Rong

Abstract. A fundamental result concerning collapsed manifolds with bounded sectional curvature is the existence of compatible local nilpotent symmetry structures whose orbits capture all collapsed directions of the local geometry [CFG]. The underlying topological structure is called an N-structure of positive rank. We show that if a manifold M admits such an N-structure \mathcal{N}, then M admits a one-parameter family of metrics g_ϵ with curvature bounded in absolute value while injectivity radii and the diameters of \mathcal{N}-orbits away from the singular set of \mathcal{N} uniformly converge to zero as $\epsilon \to 0$. Moreover, g_ϵ is \mathcal{N}-invariant away from the singular set. This result extends collapsing results in [CG1], [Fu3] and [G].

0 Introduction

Let M be a Riemannian manifold. For $\epsilon > 0$, we call M ϵ-collapsed with bounded curvature, if the injectivity radii are everywhere smaller than ϵ while the sectional curvature is bounded in absolute value, say $|\text{sec}_M| \leq 1$. Collapsed manifolds with bounded curvature were extensively studied by Cheeger–Gromov and Fukaya ([CG1,2], [CFG], [Fu1-4], [G]), and the geometric and topological structures of the collapsed manifolds are understood well (see below). For recent applications, see [FR1,2], [PT], [PRT], and references within [R2].

Gromov’s theorem on almost flat manifolds ([G], [Ru]) characterizes a maximally collapsed n-manifold M, i.e. the diameter of M is less than $\epsilon(n)$ (a constant depending on n) while $|\text{sec}_M| \leq 1$. It asserts that up to a small
perturbation of the metric, $M = \Gamma \backslash N$ is an infranilmanifold, where N is a simply connected nilpotent Lie group equipped with a left-invariant metric and Γ is a discrete subgroup of $N \rtimes \text{Aut}(N)$ such that $[\Gamma, \Gamma \cap N] \leq w(n)$, a constant depending on n.

For a general collapsed manifold M, its local structure can be described as follows (a detailed definition is given in section 1): each $x \in M$ has an open neighborhood U (called a chart) that fibers over an infranilmanifold, $\Gamma \backslash N$, with fiber a Euclidean ball [CFG]. We call the cross section through x an orbit. These charts fit together compatibly, i.e. when charts meet, the orbit from one chart sits in the orbit from the other chart. The compatibility implies that M decomposes into orbits, and an orbit at x is the union of orbits through x of all possible charts containing x. Moreover, up to a small perturbation of the metric, an orbit, equipped with the induced metric, is an embedded infranilmanifold. This structure is called a nilpotent Killing structure on M with respect to the perturbed metric. The smallest dimension of orbits of a nilpotent Killing structure N is called the rank of N. An orbit is singular if any of its neighborhoods contains an orbit of strictly larger dimension. The singular set S_N of N is the union of all singular orbits. The center part of $\Gamma \backslash N$ forms a substructure of N, called its canonical F-structure, whose orbits are flat manifolds (see section 1).

The following is a fundamental result on collapsed manifolds with bounded sectional curvature.

Theorem 0.1 [CFG]. There is a constant $\epsilon(n) > 0$ such that if the sectional curvature and injectivity radii of a complete Riemannian n-manifold M satisfy

\[|\text{sec}_M| \leq 1, \quad \text{Injrad}(M, x) < \epsilon \leq \epsilon(n), \quad \forall x \in M, \]

then M admits a nilpotent Killing structure \mathcal{N} with respect to a metric g_ϵ such that

(0.1.1) $|g - g_\epsilon|_{C^1} < \epsilon$, $|\text{sec}_{g_\epsilon}| \leq 1$ and $|\nabla^k R_{g_\epsilon}| \leq C(n, k, \epsilon)$, a constant depending on n, k and ϵ.

(0.1.2) Each \mathcal{N}-orbit has positive dimension and diameter less than ϵ.

We call the underlying topological structure of a nilpotent Killing structure a nilpotent structure (simply, an N-structure) of positive rank. A natural question is whether such an N-structure on a manifold will imply a (arbitrarily) collapsed metric?

It was suggested in [CFG, p. 328] that the answer is positive, however it has only been known in the following cases: