We study the relationship between fields of transseries and residue fields of convex subrings of non-standard extensions of the real numbers. This was motivated by a question of Todorov and Vernaeve, answered in this paper.

Keywords Transseries · Nonstandard extensions of the real field · O-Minimality

Mathematics Subject Classification (2000) 26A12 · 03C64

In this note we answer a question by Todorov and Vernaeve (see, e.g., [25]) concerning the relationship between the field of logarithmic-exponential series from [35] and the residue field of a certain convex subring of a non-standard extension of the real numbers, introduced in [24] in connection with a non-standard approach to Colombeau’s theory of generalized functions. The answer to this question can almost immediately be deduced from well-known (but non-trivial) results about o-minimal structures. It should therefore certainly be familiar to logicians working in this area, but perhaps less so to those in non-standard analysis, and hence may be worth recording.

We begin by explaining the question of Todorov–Vernaeve. Let $^*\mathbb{R}$ be a non-standard extension of \mathbb{R}. Given $X \subseteq \mathbb{R}^m$ we denote the non-standard extension of X by *X.

M. Aschenbrenner
Department of Mathematics, University of California, Box 951555, Los Angeles, CA 90095-1555, USA
e-mail: matthias@math.ucla.edu

I. Goldbring (✉)
Department of Mathematics, Statistics, and Computer Science, University of Illinois at Chicago, Science and Engineering Offices (M/C 249), 851 S. Morgan St., Chicago, IL 60607-7045, USA
e-mail: isaac@math.uic.edu
and given also a map \(f : X \to \mathbb{R}^n \), by abuse of notation we denote the non-standard extension of \(f \) to a map \(*X \to *\mathbb{R}^n\) by the same symbol \(f \).

Let \(O \) be a convex subring of \(*\mathbb{R} \). Then \(O \) is a valuation ring of \(*\mathbb{R} \), with maximal ideal

\[
\mathfrak{m} := \{ x \in *\mathbb{R} : x = 0, \text{ or } x \neq 0 \text{ and } x^{-1} \notin O \}.
\]

We denote the residue field \(O/\mathfrak{m} \) of \(O \) by \(\hat{O} \), with natural surjective morphism

\[
x \mapsto \hat{x} := x + \mathfrak{m} : O \to \hat{O}.
\]

The ordering of \(*\mathbb{R} \) induces an ordering of \(\hat{O} \) making \(\hat{O} \) an ordered field and \(x \mapsto \hat{x} \) order-preserving. By standard facts from real algebra [15], \(\hat{O} \) is real closed. Residue fields of convex subrings of \(*\mathbb{R} \) are called “asymptotic fields” in [24] (although this terminology is already used with a different meaning elsewhere [2]). The collection of convex subrings of \(*\mathbb{R} \) is linearly ordered by inclusion, and the smallest convex subring of \(*\mathbb{R} \) is

\[
*\mathbb{R}_{\text{fin}} = \{ x \in *\mathbb{R} : |x| \leq n \text{ for some } n \},
\]

with maximal ideal

\[
*\mathbb{R}_{\text{inf}} = \{ x \in *\mathbb{R} : |x| \leq \frac{1}{n} \text{ for all } n > 0 \}.
\]

The inclusions \(\mathbb{R} \to *\mathbb{R}_{\text{fin}} \to O \) give rise to a field embedding \(\mathbb{R} \to \hat{O} \), by which we identify \(\mathbb{R} \) with a subfield of \(\hat{O} \). In the case \(O = *\mathbb{R}_{\text{fin}} \) we have \(\hat{O} = \mathbb{R} \), and \(\hat{x} \) is the standard part of \(x \in *\mathbb{R}_{\text{fin}} \), also denoted in the following by \(\text{st}(x) \).

Let now \(\xi \in *\mathbb{R} \) with \(\xi > \mathbb{R} \) and let \(E \) be the smallest convex subring of \(*\mathbb{R} \) containing all iterated exponentials \(\xi, \exp \xi, \exp \exp \xi, \ldots \) of \(\xi \), that is,

\[
E = \{ x \in *\mathbb{R} : |x| \leq \exp_n(\xi) \text{ for some } n \},
\]

where \(\exp_0(\xi) = \xi \) and \(\exp_n(\xi) = \exp(\exp_{n-1}(\xi)) \) for \(n > 0 \). The maximal ideal of \(E \) is

\[
\mathfrak{e} = \{ x \in *\mathbb{R} : |x| \leq \frac{1}{\exp_n(\xi)} \text{ for all } n \},
\]

with residue field \(\hat{E} = E/\mathfrak{e} \). Note that the definition of \(\hat{E} \) depends on the choice of \(*\mathbb{R} \) and \(\xi \), which is suppressed in our notation; in [24,25], \(\hat{E} \) is denoted by \(\hat{E}_\varrho \) where \(\varrho = 1/\xi \).

By an exponential field we mean an ordered field \(K \) equipped with an exponential function on \(K \), i.e., an isomorphism \(f \mapsto \exp(f) \) between the ordered additive group of \(K \) and the ordered multiplicative group \(K^{>0} \) of positive elements of \(K \). We often write \(e^f \) instead of \(\exp(f) \), and the inverse of \(\exp \) is denoted by log: \(K^{>0} \to K \). It is