Axiomatization of abelian-by-G groups
for a finite group G

Francis Oger

Received: 15 March 1996 / Published online: 18 July 2001 – © Springer-Verlag 2001

Abstract. We show that, for each finite group G, there exists an axiomatization of the class of abelian-by-G groups with a single sentence. In the proof, we use the definability of the subgroups M^n in an abelian-by-finite group M, and the Auslander-Reiten sequences for modules over an Artin algebra.

For each group G and for each property P of groups, we say that a group M is P-by-G if there exists a normal subgroup N of M which satisfies P and such that $M/N \cong G$. In a conference at the AILA-KGS Joint Meeting on Model Theory (Florence, August 1995), C. Toffalori proposed the following conjecture: if G is a finite group, then the class of abelian-by-G groups is elementary. He showed that this property is true, for instance, if G is abelian, or if there exists no prime number p such that p^4 divides $|G|$. The same property had been previously proved for $|G|$ square-free in [3]. In the present paper, we prove the conjecture in a stronger form:

Theorem. For each finite group G, there exists an axiomatization of the class of abelian-by-G groups with a single sentence.

In section 1, we prove two definability properties for abelian-by-finite groups. These properties and the module-theoretic results of section 2 are used in section 3 for the proof of the theorem.

On the other hand, T. Coulbois proves in [2] that the class of group-by-$(\mathbb{Z}/2\mathbb{Z})$ groups is not elementary. Moreover, we show in section 4 that, if G is the non commutative group of order 8, then the class of (nilpotent of class 2)-by-G groups is not elementary.

The reader is referred to [7] concerning groups and to [6] concerning modules. Model-theoretic notions such as formula, sentence and axiomatization are also defined in [6]. For each group M and for each integer n, we write $M^n = \langle \{ x^n \mid x \in M \} \rangle$.

1. Definable subgroups in abelian-by-finite groups

In [4], we showed that two finitely generated abelian-by-finite groups are elementarily equivalent if and only if they have the same finite images. The proof was
based on the definability of the subgroups M^n for $n \geq 1$ and M abelian-by-finite. A similar argument will be used here:

Proposition 1. Let G be a finite group of order $m \geq 1$ and let $n \geq 1$ be an integer such that $G^n = 1$. Then, for each abelian-by-G group M, any element of M^n can be written as $x_1^n \cdots x_{2m-1}^n$ with $x_1, \ldots, x_{2m-1} \in M$.

Remark. In [5], F. Point proves that, for any integers $m, n \geq 1$, there exists an integer $k(m, n)$ such that, for each group G of order m and for each abelian-by-G group M, each element of M^n is a product of $k(m, n)$ n-th powers.

Proof. We consider a normal abelian subgroup A of M such that $M/A \cong G$, and some elements $g_1, \ldots, g_m \in M$, with $g_1 = 1$, such that $M = g_1 A \cup \cdots \cup g_m A$. We have $M^n \subset A$, and therefore M^n is abelian. Any element of M^n can be written as $x = (g_{r_1} a_1^n \cdots g_{r_k} a_k^n)$ with $r_1, \ldots, r_k \in \{1, \ldots, m\}$ and $a_1, \ldots, a_k \in A$. We also have $x = \prod_{1 \leq i \leq m} (\prod_{1 \leq j \leq s(i)} (g_i a_i^j)^s)$ with $a_i j \in A$ for $1 \leq i \leq m$ and $1 \leq j \leq s(i)$, since the elements $(g_i a_i^j)$ and $(g_i b_i^j)$ for $a, b \in A$ and $i, j \in \{1, \ldots, m\}$ commute.

For each $i \in \{1, \ldots, m\}$ and each $a \in A$, we have $(g_i a_i)^n = g_i^n a_i^n (a_i)^n$ with $x^n = (g_i a_i)^n = a_i^n (a_i x)^n a_i^{-n}$ for $a \in A$ and $x \in M$. Using the fact that the elements a^n for $a \in A$ and $y \in M$ belong to the abelian subgroup A, and the identity $(uv)^n = u^n v^n$, we obtain $a_x(ab) = a_x(a)a_x(b)$ for $a, b \in A$ and $x \in M$.

Now, for $1 \leq i \leq m$, we have

$$\prod_{1 \leq i \leq s(i)} (g_i a_i^j)^n = \prod_{1 \leq j \leq s(i)} (g_i^n a_i^n (a_i)^n)^n = g_i^{ns(i)} a_i^{ns(i)} = g_i^{-n} (g_i a_i^{1 \cdots s(i)})^n$$

Consequently, $\prod_{1 \leq i \leq s(i)} (g_i a_i^j)^n$ is a n-th power if $i = 1$, and a product of two n-th powers otherwise.

Proposition 2. For each integer $k \geq 2$ and for each finite group F of order k, there exist some formulas $\varphi_F(a, u_1, \ldots, u_{k-1})$ and $\psi_F(a_1, \ldots, a_{k-1})$ such that:

1) For each group M and for each maximal abelian normal subgroup A of M such that $M/A \cong F$, there exist some elements $a_1, \ldots, a_{k-1} \in A$ such that M satisfies $\psi_F(a_1, \ldots, a_{k-1})$ and $A = \{x \in M \mid \varphi_F(x, a_1, \ldots, a_{k-1})\}$.

2) For each group M and for any elements $a_1, \ldots, a_{k-1} \in M$, if M satisfies $\psi_F(a_1, \ldots, a_{k-1})$, then $A = \{x \in M \mid \varphi_F(x, a_1, \ldots, a_{k-1})\}$ is a maximal abelian normal subgroup of M which contains a_1, \ldots, a_{k-1}, and we have $M/A \cong F$.

Proof. The first part of Proposition 2 essentially comes from C. Toffalori’s conference. For each integer $k \geq 2$, we denote by $\varphi_F(u, u_1, \ldots, u_{k-1})$ the formula

$$(\forall v) (\forall_{1 \leq i < k-1} u^v u_i = u_i u^v) \land (\forall v \forall w) (u^v u^w = u^w u^v).$$