Hankel and Toeplitz–Schur multipliers

A.B. Aleksandrov · V.V. Peller

Received: 16 February 2001 / revised version: 2 December 2001 / Published online: 27 June 2002 – © Springer-Verlag 2002

Abstract. We study the problem of characterizing Hankel–Schur multipliers and Toeplitz–Schur multipliers of Schatten–von Neumann class S_p for $0 < p < 1$. We obtain various sharp necessary conditions and sufficient conditions for a Hankel matrix to be a Schur multiplier of S_p. We also give a characterization of the Hankel–Schur multipliers of S_p whose symbols have lacunary power series. Then the results on Hankel–Schur multipliers are used to obtain a characterization of the Toeplitz–Schur multipliers of S_p. Finally, we return to Hankel–Schur multipliers and obtain new results in the case when the symbol of the Hankel matrix is a complex measure on the unit circle.

1. Introduction

The Schur product of matrices $A = \{a_{jk}\}$ and $B = \{b_{jk}\}$ is defined as the matrix $A \ast B = \{a_{jk}b_{jk}\}$ whose entries are the products of the entries of A and B.

If we identify in a natural way the bounded linear operators on ℓ^2 with their matrix representation with respect to the standard orthonormal basis of ℓ^2, we can study Schur multipliers of various classes of linear operators on ℓ^2. Namely, if X is a class of bounded linear operators on ℓ^2, we say that a matrix A is a Schur multiplier of X if and only if $\forall B \in X \Rightarrow A \ast B \in X$.

We are interested in this paper in Schur multipliers of Schatten–von Neumann classes S_p (see [GK], [BS1] for information on the classes S_p). For $0 < p < \infty$ we denote by M_p the space of Schur multipliers of S_p and we put $\|A\|_{M_p} = \sup \{\|A \ast B\|_{S_p} : \|B\|_{S_p} \leq 1\}$.

A.B. Aleksandrov
St-Petersburg Branch, Steklov Institute of Mathematics, Fontanka 27, 191011 St-Petersburg, Russia

V.V. Peller
Department of Mathematics, Michigan State University, East Lansing, MI 66506, USA

The first author is partially supported by Grant 99-01-00103 of Russian Foundation of Fundamental Studies and by Grant 326.53 of Integration. The second author is partially supported by NSF grant DMS 9970561.
It is easy to see that for $p \geq 1$ the functional $\| \cdot \|_{M^p}$ is a norm on M^p. Using the triangle inequality
\[\| T_1 + T_2 \|_p \leq \| T_1 \|_p + \| T_2 \|_p, \quad 0 < p < 1, \]
(1.1)
one can easily see that
\[\| A_1 + A_2 \|_{M^p} \leq \| A_1 \|_{M^p} + \| A_2 \|_{M^p}, \quad 0 < p < 1. \]
(1.2)
We denote by M^p the class of Schur multipliers of the space B of bounded linear operators on ℓ^2.

In this paper we are going to study the Hankel–Schur multipliers of S^p, i.e., matrices of class M^p of the form
\[\{ \gamma_{j+k} \}_{j,k \geq 0} \]
and the Toeplitz–Schur multipliers of S^p, i.e., matrices of class M^p of the form
\[\{ \tau_{j-k} \}_{j,k \geq 0}. \]

Let us summarize briefly some well-known properties of classes M^p. The class M^2 is the space of matrices with bounded entries. If $1 < p < \infty$, then $M^p = M^p'$, where $1/p + 1/p' = 1$. The space M^1 coincides with M_1. This follows from the facts that the dual space to S^p can be identified in a natural way with S^p' and the dual to S^1 can be identified with B.

Next, interpolating between the classes S^p, one can easily see that $M^p_1 \subset M^p_2$ if $0 < p_1 \leq p_2 \leq 2$.

To describe the space M, we consider the projective tensor product $\ell^\infty \widehat{\otimes} \ell^\infty$ that consists of matrices $C = \{ c_{jk} \}_{j,k \geq 0}$ for which there exist sequences $X(n) = \{ x_j \}_{j \geq 0} \in \ell^\infty$ and $Y(n) = \{ y_j \}_{j \geq 0} \in \ell^\infty$, $n \geq 0$, such that
\[c_{jk} = \sum_{n \geq 0} x_{n+k} y_{n-j}, \]
and
\[\sum_{n \geq 0} \| x(n) \|_\ell^\infty \| y(n) \|_\ell^\infty < \infty. \]

The norm $\| C \|_{\ell^\infty \widehat{\otimes} \ell^\infty}$ is by definition the infimum in (1.4) over all sequences $X(n)$ and $Y(n)$ satisfying (1.3).

For any positive integer m we consider the matrix $Q(m) = \{ q(m)_{jk} \}_{j,k \geq 0}$ defined by
\[q(m)_{jk} = \begin{cases} 1, & j \leq m, k \leq m, \\ 0, & \text{otherwise}. \end{cases} \]
(1.5)
It is well known that a matrix A belongs to M^p_∞ if and only if
\[\sup_m \| Q(m) \otimes A \|_{\ell^\infty \widehat{\otimes} \ell^\infty} < \infty. \]