Hyponormality of Toeplitz operators
with polynomial symbols

In Sung Hwang, In Hyoun Kim, Woo Young Lee

Department of Mathematics, Sungkyunkwan University, Suwon 440-746, Korea
(e-mail: wylee@yurim.skku.ac.kr)

Received: 2 April 1998

Mathematics Subject Classification (1991): 47B20, 47B35

1 Introduction

A bounded linear operator A on a Hilbert space H with inner product (\cdot, \cdot) is said to be hyponormal if its selfcommutator $[A^*, A] = A^*A - AA^*$ induces a positive semidefinite quadratic form on H via $\xi \mapsto ([A^*, A] \xi, \xi)$, for $\xi \in H$. Let $H^2(T)$ denote the Hardy space of the unit circle $T = \partial \mathbb{D}$ in the complex plane. Recall that given $\varphi \in L^\infty(T)$, the Toeplitz operator with symbol φ is the operator T_φ on $H^2(T)$ defined by $T_\varphi f = P(\varphi \cdot f)$, where $f \in H^2(T)$ and P denotes the projection that maps $L^2(T)$ onto $H^2(T)$. The hyponormality of Toeplitz operators has been studied by C. Cowen [1], [2], P. Fan [4], C. Gu [8], T. Ito and T. Wong [9], T. Nakazi and K. Takahashi [11], D. Yu [13], K. Zhu [14], R. Curto, D. Farenick, the second and the third named authors [3], [5], [6], [10] and others. An elegant theorem of C. Cowen [2] characterizes the hyponormality of a Toeplitz operator T_φ on $H^2(T)$ by properties of the symbol $\varphi \in L^\infty(T)$. K. Zhu [14] reformulated Cowen’s criterion and then showed that the hyponormality of T_φ with polynomial symbols φ can be decided by a method based on the classical interpolation theorem of I. Schur [12]. Also Farenick and the third named author [5] characterized the hyponormality of T_φ in terms of the Fourier coefficients of the trigonometric polynomial φ in the cases that the outer coefficients of φ have the same modulus. But the case of arbitrary trigonometric polynomials φ, though

* Supported in part by the BSRI-97-1420 and the KOSEF through the GARC at Seoul National University.
solved in principle by Cowen’s theorem or Zhu’s theorem, is in practice very complicated. On the other hand, Nakazi and Takahashi [11, Corollary 5] showed that if \(\varphi(z) = \sum_{n=-m}^{N} a_n z^n \) is a trigonometric polynomial with \(m \leq N \) and if for every zero \(\zeta \) of \(z^m \varphi \) such that \(|\zeta| > 1 \), the number \(1/\zeta \) is a zero of \(z^m \varphi \) in the open unit disk \(\mathbb{D} \) of multiplicity greater than or equal to the multiplicity of \(\zeta \), then \(T_{\varphi} \) is hyponormal. But the converse is not true in general. To see this consider the following trigonometric polynomial: \[\varphi(z) = z^{-2}(z-2)(z-1)(z-\frac{1}{3}). \] Then \(\varphi(z) = \frac{2}{15} z^{-2} - \frac{19}{15} z^{-1} + \frac{55}{15} - \frac{53}{15} z + z^2 \). Using an argument of P. Fan [4, Theorem 1] – for every trigonometric polynomial \(\varphi \) of the form \(\varphi(z) = \sum_{n=-m}^{N} a_n z^n \),

\[(0.1) \quad \text{if } T_{\varphi} \text{ is hyponormal } \iff \left| \det \left(\frac{a_1}{\tau_1} \frac{a_2}{\tau_2} \right) \right| \leq |a_2|^2 - |a_2|^2, \]

a straightforward calculation shows that \(T_{\varphi} \) is hyponormal. In this paper we consider how the converse of the above result due to Nakazi and Takahashi survives for arbitrary trigonometric polynomials. The main results are as follows. Suppose \(\varphi(z) = \sum_{n=-m}^{N} a_n z^n \) with \(m \leq N \) and write

\[\mathfrak{F} := \{ \zeta, 1/\zeta : \text{the complex numbers } \zeta \text{ and } 1/\zeta \text{ are zeros of } z^m \varphi \}. \]

If \(\mathfrak{F} \) contains at least \((N + 1)\) elements then the following statements are equivalent.

(i) \(T_{\varphi} \) is a hyponormal operator.

(ii) For every zero \(\zeta \) of \(z^m \varphi \) such that \(|\zeta| > 1 \), the number \(1/\zeta \) is a zero of \(z^m \varphi \) in the open unit disk \(\mathbb{D} \) of multiplicity greater than or equal to the multiplicity of \(\zeta \).

Moreover, in the cases where \(T_{\varphi} \) is a hyponormal operator, the rank of the selfcommutator of \(T_{\varphi} \) is computed from the formula \(\text{rank } [T_{\varphi}, T_{\varphi}] = N - m + Z_{\mathbb{D}} - Z_{\mathbb{C}\setminus\mathbb{D}} \), where \(Z_{\mathbb{D}} \) and \(Z_{\mathbb{C}\setminus\mathbb{D}} \) are the number of zeros of \(z^m \varphi \) in \(\mathbb{D} \) and in \(\mathbb{C}\setminus\mathbb{D} \) counting multiplicity. In addition, a new necessary condition for hyponormality of \(T_{\varphi} \) with polynomial symbols \(\varphi \) is presented: if \(\varphi(z) = \sum_{n=-m}^{N} a_n z^n \) is such that \(T_{\varphi} \) is hyponormal and if \(z^m \varphi = a_N \prod_{j=1}^{m+N} (z - \zeta_j) \), then

\[\left| \sum_{j=1}^{m+N} (\zeta_j - 1/\zeta_j) \right| \leq \frac{1}{\prod_{j=1}^{m+N} |\zeta_j|} - \prod_{j=1}^{m+N} |\zeta_j|. \]

2 Main results

We shall use a variant of Cowen’s theorem [1] that was first proposed by Nakazi and Takahashi [11].

Cowen’s Theorem. Suppose \(\varphi \in L^\infty(\mathbb{T}) \) is arbitrary and write

\[\mathcal{E}(\varphi) = \{ k \in H^\infty(\mathbb{T}) : ||k||_\infty \leq 1 \text{ and } \varphi - k\varphi \in H^\infty(\mathbb{T}) \}. \]