Continuation of L^2-holomorphic functions

Marius A. S. Irgens

Department of Mathematical Sciences, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway (e-mail: mariusi@math.ntnu.no)

Received: 7 June 2003 / Published online: 17 February 2004 – © Springer-Verlag 2004

Abstract Let Ω be a bounded domain in \mathbb{C}^n and let $L^2_h(\Omega)$ be the L^2-holomorphic functions on Ω. We show that the envelope of holomorphy and the $L^2_h(\Omega)$-envelope of holomorphy of Ω differ by at most a pluripolar set.

Mathematics Subject Classification (2000): 32D10, 32A36, 32U30

1 Introduction

Let Ω be a domain in \mathbb{C}^n. We denote the holomorphic functions on Ω by $\mathcal{O}(\Omega)$ and set $L^2_h(\Omega) = L^2(\Omega) \cap \mathcal{O}(\Omega)$.

The goal of this work is to study analytic continuation of functions in $L^2_h(\Omega)$. Pflug [P] showed that if Ω is a bounded pseudoconvex domain in \mathbb{C}^n and Ω is fat (i.e. $\text{int} \bar{\Omega} = \Omega$), then Ω is an $L^2_h(\Omega)$-domain of holomorphy. On the other hand, if E is an analytic subset of a domain Ω, then Bell [B] showed that all functions in $L^2_h(\Omega)$ extend holomorphically across E. In one variable, a complete description of these phenomena has been known for a while. With the terminology from the next section, it can be stated as follows.

Theorem 1. Let Ω be a domain in \mathbb{C}. Then Ω is an L^2_h-domain of holomorphy if and only if Ω does not have any polar boundary points.

See [C] for a proof. We remark that this is a local description. In Theorem 7 we prove a generalization of this result to Riemann domains over \mathbb{C}^n with bounded projection. Using this we get the following description of L^2_h-envelopes of holomorphy.

* This article is based on work the author did during his Ph.D. studies at the University of Michigan under the supervision of John Erik Fornæss.
Theorem 2 (Main theorem). Let \((X, \pi)\) be a Riemann domain over \(\mathbb{C}^n\) such that \(\pi(X)\) is bounded. Then the envelope of holomorphy, \((\tilde{X}, \tilde{\pi})\), can be embedded into the \(L^2_h(X)\)-envelope of holomorphy, \((\tilde{X}_{L^2_h}, \tilde{\pi}_{L^2_h})\), and the difference between the two sets is at most pluripolar.

The article is organized as follows. We begin with a section covering the necessary definitions and background results. Section 3 proves a version of Theorem 1 for schlicht bounded domains. The technicalities of the Riemann domain case are treated in Section 4. We discuss the main theorem in the last section.

The author would like to thank Anders Björn for drawing his attention to Theorem 1.

2 Definitions and background results

Let \(\Omega\) be a domain in \(\mathbb{C}^n\). We say that \(\Omega\) is an \(L^2_h(\Omega)\)-domain of holomorphy, or an \(L^2_h\)-domain for short, if there are functions in \(L^2_h(\Omega)\) which do not extend holomorphically. More precisely:

Definition 1. Let \(\Omega\) be a domain in \(\mathbb{C}^n\). We will call \(\Omega\) an \(L^2_h\)-domain of holomorphy if we cannot find non-empty open sets \(U\) and \(V, V\) connected and not contained in \(\Omega\) and \(U \subset V \cap \Omega\), such that for every \(f \in L^2_h(\Omega)\) there is a function \(F \in \mathcal{O}(V)\) satisfying \(F = f\) on \(U\).

Let us remark that we require \(F\) to be only holomorphic on \(V\), not \(L^2\).

If \(\Omega\) is not an \(L^2_h\)-domain, then all functions in \(L^2_h(\Omega)\) extend holomorphically. These extensions need not, however, be single valued, so we introduce Riemann domains, i.e. domains over \(\mathbb{C}^n\) with a local homeomorphism to \(\mathbb{C}^n\) called the projection. Let us recall that two Riemann domains are equivalent if there is a biholomorphism between them which preserves the projections. We say that a Riemann domain \((X, \pi)\) is an \(L^2_h\)-domain if any other Riemann domain to which all the functions in \(L^2_h(X)\) extend holomorphically is equivalent to \((X, \pi)\). For domains in \(\mathbb{C}^n\), this is equivalent to the definition given above. A Riemann domain which is equivalent to a domain in \(\mathbb{C}^n\) is said to be schlicht.

If \((X, \pi)\) is not an \(L^2_h\)-domain, then by Thullen’s theorem (see for example [N]) there exists a unique largest Riemann domain to which all functions in \(L^2_h(X)\) extend holomorphically. We call this the \(L^2_h(X)\)-envelope of holomorphy of \((X, \pi)\), or \(L^2_h\)-envelope for short, and denote it \((\tilde{X}_{L^2_h}, \tilde{\pi}_{L^2_h})\).

Recall that a set is (pluri)polar if there is a (pluri)subharmonic function \(u\), not identically \(-\infty\), such that \(E \subset \{u = -\infty\}\). When we talk about polar sets in \(\mathbb{C}^n\), we will mean polar in the sense of \(\mathbb{R}^{2n}\). In order to describe the boundary of \(L^2_h\)-domains we introduce the following definition.

Definition 2. Let \(\zeta\) be a boundary point of a domain \(\Omega \in \mathbb{C}^n\). We will say that \(\zeta\) is a pluripolar boundary point if there is a neighborhood \(V\) of \(\zeta\) such that \(\partial \Omega \cap V\) is a pluripolar set.

For Riemann domains, let us first recall Grauert’s [G] notion of boundary points.