On commuting polynomial automorphisms of \mathbb{C}^k, $k \geq 3$

Cinzia Bisi

Abstract We characterize the polynomial automorphisms of \mathbb{C}^3, which commute with a regular automorphism. We use their meromorphic extension to \mathbb{P}^3 and consider their dynamics on the hyperplane at infinity. We conjecture the additional hypothesis under which the same characterization is true in all dimensions. We give a partial answer to a question of S. Smale that in our context can be formulated as follows: can any polynomial automorphism of \mathbb{C}^k be the uniform limit on compact sets of polynomial automorphisms with trivial centralizer (i.e. $C(f) \simeq \mathbb{Z}$)?

Keywords Commuting polynomial automorphisms · Hénon maps · Indeterminacy sets · Green functions · Blow-up

Mathematics Subject Classification (1991) Primary 32H50 · 14R10; Secondary 37F10 · 58F23

1 Introduction

Complex affine k-space, \mathbb{C}^k, is one of the basic objects in complex analysis and geometry. It seems quite hard to give an algebraic description of the group of (polynomial) automorphisms of \mathbb{C}^k, when $k \geq 3$. The group of polynomial automorphisms of \mathbb{C}^k, $\text{Aut}(\mathbb{C}^k)$, consists of bijective maps:

$$f : (z_1, \ldots, z_k) \in \mathbb{C}^k \rightarrow (f_1(z_1, \ldots, z_k), \ldots, f_k(z_1, \ldots, z_k)) \in \mathbb{C}^k$$

C. Bisi (✉)
Dipartimento di Matematica, Università della Calabria, Ponte Bucci, Cubo 30b, 87036 Arcavacata di Rende (CS), Italy
E-mail: bisi@math.unifi.it; bisi@mat.unical.it
where \(f_1, \ldots, f_k \in \mathbb{C}[z_1, \ldots, z_k] \). When \(f \) is polynomial and bijective, then the inverse \(f^{-1} \) is a polynomial mapping.

In dimension 2, the algebraic structure of the group of polynomial automorphisms is well known. The result is due to Jung [10]; it was reproved in several different ways [17] and recently also in [14]. Jung’s theorem asserts that the group \(\text{Aut}(\mathbb{C}^2) \) is the amalgamated product of its subgroups \(\mathcal{E} \) and \(\mathcal{A} \) with respect to their intersection \(\mathcal{A} \cap \mathcal{E} \), where the group \(\mathcal{E} \) of \textit{elementary} maps is:

\[
\mathcal{E} = \{(z, w) \mapsto (az + p(w), \beta w + \gamma) : \alpha, \beta, \gamma \in \mathbb{C}, \alpha \beta \neq 0, p \in \mathbb{C}[w]\}
\]

the group \(\mathcal{A} \) of \textit{affine} maps is:

\[
\mathcal{A} = \{(z, w) \mapsto (a_1 z + b_1 w + c_1, a_2 z + b_2 w + c_2) : a_i, b_i, c_i \in \mathbb{C}, a_1 b_2 - a_2 b_1 \neq 0\}
\]

and where \(\mathcal{A} \mathcal{T} \) denote the intersection \(\mathcal{A} \cap \mathcal{E} \), i.e. the group of the automorphisms \textit{affine and triangular}:

\[
\mathcal{A} \mathcal{T} = \{(z, w) \mapsto (a_1 z + b_1 w + c_1, a_2 z + b_2 w + c_2) : a_1, b_1, c_1 \in \mathbb{C}, a_1 b_2 - a_2 b_1 \neq 0\}.
\]

By this structure theorem, each automorphism \(\varphi \in (\text{Aut}(\mathbb{C}^2) \setminus \mathcal{A} \mathcal{T}) \) can be written as a composition of elementary and affine automorphisms. In 1989 Friedland and Milnor [8] proved that any polynomial automorphism of \(\mathbb{C}^2 \) is conjugated either to an elementary map or to a finite composition of Hénon maps \(h_j \) defined as follows

\[
h_j(z, w) = (p_j(z) - a_j w, z), \quad a_j \in \mathbb{C},
\]

where \(\deg(p_j) \geq 2 \). We denote by \(\mathcal{H} \) the semigroup generated by Hénon maps.

On the other hand, the algebraic structure of \(\text{Aut}(\mathbb{C}^k) \), \(k \geq 3 \), is poorly understood even if the Nagata Conjecture has been recently proved [22,23]. Recently Shestakov and Umirbaev [22,23] have proved that tame and wild polynomial automorphisms of \(\mathbb{C}^3 \) are algorithmically recognizable. The following Nagata automorphism in \(\text{Aut}(\mathbb{C}[x, y, z]) \),

\[
\begin{align*}
\sigma(x) &= x + (x^2 - yz)z, \\
\sigma(y) &= y + 2(x^2 - yz)x + (x^2 - yz)^2 z, \\
\sigma(z) &= z
\end{align*}
\]

provides a candidate of such wild automorphisms.

We recall now some general facts. Let \(z = (z_1, \ldots, z_k) \) be affine coordinates in \(\mathbb{C}^k \) and let \([z : t] = [z_1 : \cdots : z_k : t] \) be corresponding homogeneous coordinates in \(\mathbb{P}^k \), then the hyperplane at infinity \(\Pi_{\infty} \) has equation \(\{t = 0\} \).

Each polynomial automorphism \(f \) of \(\mathbb{C}^k \) can be considered as a birational map \(\overline{f} \) of \(\mathbb{P}^k \). We will denote, respectively, \(I^+_f \) and \(I^-_f \) the indeterminacy subsets of \(\overline{f} \) and of \(\overline{f}^{-1} \). These are two analytic and algebraic subsets of complex codimension at least 2 in \(\mathbb{P}^k \), contained in \(\Pi_{\infty} \). In the sequel we are going to write \(f \) instead of \(\overline{f} \). In a point \(p \in I^+_f \) it is possible to define the \textit{blow-up} of \(f \) in \(p \) which is the set

\[
B^f_p = \bigcap_{\epsilon > 0} \overline{f}(\mathbb{P}(p, \epsilon) \setminus I^+_f)
\]

In other words it is the fiber over \(p \) in the closure of the graph of \(f \) and it is an analytic subset of \(\Pi_{\infty} \) of dimension \(h \) with \(1 \leq h \leq (k - 1) \). We will say, [20], that \(f \) is an \textit{algebraically stable} polynomial automorphism if and only if \(\overline{f}^n([z : 0]) \setminus I^+_f \) is not...