Classification of hypersurfaces with constant Möbius curvature in S^{m+1}

Zhen Guo · Tongzhu Li · Limiao Lin · Xiang Ma · Changping Wang

Received: 8 December 2010 / Accepted: 26 January 2011 / Published online: 17 March 2011
© Springer-Verlag 2011

Abstract Let $x : M^m \rightarrow S^{m+1}$ be an m-dimensional umbilic-free hypersurface in an $(m+1)$-dimensional unit sphere S^{m+1}, with standard metric $I = dx \cdot dx$. Let II be the second fundamental form of isometric immersion x. Define the positive function $\rho = \sqrt{\frac{m}{m-1}} \|II - \frac{1}{m} tr(II)I\|$. Then positive definite $(0,2)$ tensor $g = \rho^2 I$ is invariant under conformal transformations of S^{m+1} and is called Möbius metric. The curvature induced by the metric g is called Möbius curvature. The purpose of this paper is to classify the hypersurfaces with constant Möbius curvature.

Keywords Möbius metric · Constant sectional curvature · Möbius flat hypersurfaces · Möbius deformable hypersurfaces · Curvature-spiral

Mathematics Subject Classification (2000) 53A30 · 53B25

Z. Guo and L. Lin are supported by the project No.10561010 and No.10861013 of NSFC; T. Z. Li is supported by the grant No.10801006 of NSFC; X. Ma and C. P. Wang are partially supported by the grant No. 10771005 of NSFC.

Z. Guo (✉) · L. Lin
Department of Mathematics, Yunnan Normal University, Kunming 650092, People’s Republic of China
e-mail: gzh2001y@yahoo.com
L. Lin
e-mail: 83343055@163.com
T. Li
Department of Mathematics, Beijing Institute of Technology, Beijing 100081, People’s Republic of China
e-mail: litz@bit.edu.cn
X. Ma · C. Wang
LMAM, School of Mathematical Sciences, Peking University, Beijing, People’s Republic of China
e-mail: maxiang@math.pku.edu.cn
C. Wang
e-mail: cpwang@math.pku.edu.cn
1 Introduction

Let \(x : M^m \to \mathbb{S}^{m+1} \) be an \(m \)-dimensional umbilic-free hypersurface, with the standard metric \(I = dx \cdot dx \), in an \((m+1)\)-dimensional unit sphere \(\mathbb{S}^{m+1} \). Let \(II \) be the second fundamental form and \(H \) the mean curvature of \(x \). Define \(\rho^2 = \frac{m}{m-1} \| II - HI \|^2 \), then positive definite 2-form \(\mathbf{g} = \rho^2 I \) is invariant under conformal group (or Möbius group) of \(\mathbb{S}^{m+1} \) and is called Möbius metric of \(x \). The curvature tensor \(R \) induced by the metric \(\mathbf{g} \) is called Möbius curvature of \(x \). Let \(R_I \) denote the curvature tensor with respect to the metric \(I \).

It is well-known that under a conformal change \(I \to \mathbf{g} = \rho^2 I \) of the metric, the relationship between \(R \) and \(R_I \) is as follows:

\[
\rho^{-2} R(X_1, X_2, X_3, X_4) = R_I(X_1, X_2, X_3, X_4) - \left((\text{Hess}(\log \rho) - d \log \rho \otimes d \log \rho) \otimes I + I \otimes (\text{Hess}(\log \rho) - d \log \rho \otimes d \log \rho) + \| \nabla \log \rho \|^2 I \otimes I \right)(X_1, X_3; X_2, X_4)
+ \left((\text{Hess}(\log \rho) - d \log \rho \otimes d \log \rho) \otimes I + I \otimes (\text{Hess}(\log \rho) - d \log \rho \otimes d \log \rho) + \| \nabla \log \rho \|^2 I \otimes I \right)(X_2, X_3; X_1, X_4),
\]

where \(X_r (1 \leq r \leq 4) \) is the tangent vector field of \(M^m \), \(\nabla \) and \(\text{Hess} \) denote the gradient operator and Hessian of \(I \), respectively. Since \(R \) is induced by \(\mathbf{g} \), \(R \) is also invariant under the conformal transformations of \(\mathbb{S}^{m+1} \). By using Gauss equation of hypersurface \(x \):

\[
R_I(X_1, X_2, X_3, X_4) = (II \otimes II + I \otimes I)(X_1, X_3; X_2, X_4)
-(II \otimes II + I \otimes I)(X_2, X_3; X_1, X_4),
\]

we can write

\[
R(X_1, X_2, X_3, X_4) = (\mathbf{B} \otimes \mathbf{B} + \mathbf{A} \otimes \mathbf{g} + \mathbf{g} \otimes \mathbf{A})(X_1, X_3; X_2, X_4)
-(\mathbf{B} \otimes \mathbf{B} + \mathbf{A} \otimes \mathbf{g} + \mathbf{g} \otimes \mathbf{A})(X_2, X_3; X_1, X_4),
\]

where

\[
\mathbf{B} = \rho (II - HI),
\]

\[
\mathbf{A} = -(\text{Hess}(\log \rho) - d \log \rho \otimes d \log \rho - HII) - \frac{1}{2} (\| \nabla \log \rho \|^2 - 1 + H^2) I.
\]

Equation (1.2) shows that the curvature tensor \(R \) induced by \(\mathbf{g} \) can be expressed by two Möbius invariants \(\mathbf{B} \) and \(\mathbf{A} \) which are called the Möbius second fundamental form and Blaschke tensor of the hypersurface in \(\mathbb{S}^{m+1} \), respectively. We use \(K(p, \sigma) \) \((p \in M^m, \sigma \) is a 2-dimensional subspace of \(T_p M^m \)) to denote the sectional curvature of \(R \). \(K(p, \sigma) \) is called the Möbius sectional curvature of \(x \) as it is invariant under the Möbius group of \(\mathbb{S}^{m+1} \). In a point of view of conformal geometry, one of the basic questions in the differential geometry of hypersurfaces is to classify all hypersurfaces in \(\mathbb{S}^{m+1} \) with constant Möbius sectional curvature \(K \) up to Möbius transformations. The purpose of this work is to answer the above basic question. In this paper, for the case of \(m > 3 \), we complete the classification of the \(m \)-dimensional hypersurfaces in \(\mathbb{S}^{m+1} \) with constant Möbius sectional curvature \(K \). We will use the Möbius geometry method of submanifolds which was established by Wang [19].

For the purpose to make our main result intuitive, we use the following notations: \(\mathbb{R}^{m+3}_1 \) denotes Lorentz space with the inner product \(\langle \cdot, \cdot \rangle \) given by

\[
\langle Y, Z \rangle = -y_0z_0 + y_1z_1 + \cdots + y_mz_{m+2}.
\]