Certain classes of pluricomplex Green functions
don \mathbb{C}^n

Dan Coman

Department of Mathematics, University of Notre Dame, Notre Dame, IN 46556-5683, USA
(e-mail: Dan.F.Coman.2@nd.edu)

Received November 24, 1998; in final form April 19, 1999 /
Published online July 3, 2000 – © Springer-Verlag 2000

Abstract. We consider (pluricomplex) Green functions defined on \mathbb{C}^n, with logarithmic poles in a finite set and with logarithmic growth at infinity. For certain sets, we describe all the corresponding Green functions. The set of these functions is large and it carries a certain algebraic structure. We also show that for some sets no such Green functions exist. Our results indicate the fact that the set of poles should have certain algebro-geometric properties in order for these Green functions to exist.

Mathematics Subject Classification (1991): 32F05, 32F07, 31C10

1 Introduction

For a bounded domain $D \subset \mathbb{C}^n$, let $A = \{p_1, \ldots, p_k\}$ be a k-tuple of pairwise distinct points in D and let $W = \{\nu_1, \ldots, \nu_k\}$ be a k-tuple of positive real numbers. The pluricomplex Green function of D with poles in A of weights in W, is defined by $g_D(z, A, W) = \sup u(z)$, where the supremum is taken over the class of negative plurisubharmonic functions u in D which have a logarithmic pole at p_j with weight ν_j, for $j = 1, \ldots, k$.

These functions exist for any k-tuples A, W, and their definition is in analogy to the one dimensional case (see [Kl1], [L]). In [D] and [L] it is shown that if Ω is hyperconvex then $g_D(\cdot, A, W)$ is the unique solution to the following Dirichlet problem for the complex Monge-Ampère operator: $u \in PSH(D) \cap C(\overline{D}\setminus A)$, $u(z) - \nu_j \log \|z - p_j\| = O(1)$ as $z \to p_j$, $(dd^c u)^n = \sum_{j=1}^k \nu_j \delta_{p_j}$, $u = 0$ on ∂D. Here, as well as in the sequel, $PSH(D)$ denotes the class of plurisubharmonic functions on D, $d = \partial + \overline{\partial}$, $d^c = \frac{1}{2\pi i} (\partial - \overline{\partial})$, and δ_{p_j} is the Dirac mass at p_j.
In the case of entire plurisubharmonic functions, \(L_+ \) is defined to be the set of functions \(u \in PSH \cap L^{\infty}_{loc}(\mathbb{C}^n) \) such that \(u(z) = \log \|z\| + O(1) \) as \(\|z\| \to \infty \) (see e.g. [B] and [Kl2]). The following Monge-Ampère equation is studied in [Ko1] and [Ko2]: \(u \in L_+ \), \((dd^c u)^n = f \, d\lambda \), where \(\lambda \) is the Lebesgue measure and \(f \) is a non-negative measurable function. In [Ko1] it is shown that this equation has a continuous solution for certain classes of functions \(f \), and regularity questions are studied in [Ko2]. The uniqueness of the solution is proved in [BT3]: if \(u,v \in L_+ \) and \((dd^c u)^n = (dd^c v)^n \) then \(u - v \) is constant.

In this paper we study entire plurisubharmonic functions with logarithmic growth (in analogy to the class \(L_+ \)), whose Monge-Ampère measure is a finite sum of Dirac masses. Let \(A = \{ p_1, \ldots, p_k \} \) be a \(k \)-tuple of pairwise distinct points in \(\mathbb{C}^n \) and \(W = \{ \nu_1, \ldots, \nu_k \} \) be a \(k \)-tuple of positive weights. Without loss of generality we shall assume throughout the paper that \(\nu_1 \geq \nu_2 \geq \ldots \geq \nu_k > 0 \). As in the case of a bounded domain, we can consider the following classes \(M_n(A,W) \) of entire pluricomplex Green functions. By definition, \(M_n(A,W) \) is the set of solutions of the following Monge-Ampère equation:

\[
\begin{cases}
 u \in PSH(\mathbb{C}^n) \cap L^{\infty}_{loc}(\mathbb{C}^n \setminus A) , \\
 u(z) - \nu_j \log \|z - p_j\| = O(1) \quad \text{as } z \to p_j , \\
 \lim_{\|z\| \to \infty} \left(\frac{u(z)}{\log \|z\|} \right) \in (0, +\infty) \quad \text{exists} , \\
 (dd^c u)^n = \sum_{j=1}^k \nu_j^n \delta_{p_j} .
\end{cases}
\]

When the weights \(\nu_j \) are equal, hence without loss of generality equal to 1, we denote the corresponding class by \(M_n(A) \). If \(A \) consists of one point, we may assume \(A = \{0\} \), \(\nu_1 = 1 \), and we denote the corresponding class by \(M_n(0) \).

We remark that \(M_1(A,W) \) consists precisely of the functions \(\sum_{j=1}^k \nu_j \log \|z - p_j\| + c \), for arbitrary constants \(c \). Functions in \(M_n(A,W) \) can be viewed as higher dimensional generalizations of these classical Green functions. However, we shall see that when \(n > 1 \) \(M_n(A,W) \) can be in some cases empty. In some other cases we will describe all the elements of \(M_n(A,W) \). In these cases \(M_n(A) \) has actually many elements, in the sense that they are not unique up to addition of constants.

In Sect. 2 of the paper we collect a few known results. In Sect. 3 we study the case when \(A = f^{-1}(0) \), where \(f : \mathbb{C}^n \to \mathbb{C}^n \) is a holomorphic map such that 0 is a regular value for \(f \) and the following holds for some integer