Superconformal Symmetry and HyperKähler Manifolds with Torsion

Yat Sun Poon1, Andrew Swann2

1 Department of Mathematics, University of California at Riverside, Riverside, CA 92521, USA.
E-mail: ypoon@math.ucr.edu

2 Department of Mathematics and Computer Science, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark. E-mail: swann@imada.sdu.dk

Received: 28 November 2001 / Accepted: 15 June 2003
Published online: 19 August 2003 – © Springer-Verlag 2003

Abstract: The geometry arising from Michelson & Strominger’s study of $\mathcal{N} = 4B$ supersymmetric quantum mechanics with superconformal $D(2, 1; \alpha)$-symmetry is a hyperKähler manifold with torsion (HKT) together with a special homothety. It is shown that different parameters α are related via changes in potentials for the HKT target spaces. For $\alpha \neq 0, -1$, we describe how each such HKT manifold M^4m is derived from a space $N^4m - 4$ which is quaternionic Kähler with torsion and carries an Abelian instanton.

1. Introduction

In the study of two-dimensional sigma models a variety of different quaternionic geometries arise on the target spaces. In the presence of a Wess-Zumino term the metric connections have non-zero torsion. For $\mathcal{N} = 4B$ rigid supersymmetry the target space carries an HKT structure: the geometry of a hyperKähler connection with totally skew symmetric torsion [4]. For $\mathcal{N} = 4B$ local symmetry the resulting geometry [6] is known as QKT (quaternionic Kähler with torsion). The mathematical background of HKT geometry was reported in [5], where many examples were constructed. Mathematical discussion of QKT geometry may be found in [7].

Through the work of Maldacena [8] there has been much interest in field theories with superconformal symmetry. Michelson and Strominger [9] showed that for $\mathcal{N} = 4B$ rigid supersymmetry examples of quantum mechanical systems in one dimension with actions of the superconformal groups $D(2, 1; \alpha)$ may be obtained. As discussed in [2], $D(2, 1; \alpha)$ has $\text{su}(2) \oplus \text{su}(2)$ as its algebra of R-symmetries and $D(2, 1; -2)$ is the supergroup $\text{Osp}(4|2)$. On the target space, Michelson and Strominger [9] show that the HKT manifold (locally) has a certain vector field X generating one homothety and three isometries, see Eqs. (2.2). In this paper we investigate the geometry of an HKT manifold with such a vector field. In [12], we showed that the length-squared of X gives a
potential \(\mu \) for the HKT metric. By transforming \(\mu \) we show in Sect. 3 that \(D(2, 1; \alpha) \)-symmetries for different values of \(\alpha \) are closely related. In particular, if an HKT manifold has a vector field \(X \) generating a \(D(2, 1; \alpha) \)-symmetry with \(\alpha < 0 \) and \(\alpha \neq -1 \), then the same manifold carries HKT metrics with \(D(2, 1; \alpha') \)-symmetry for each \(\alpha' < 0 \). Similarly, any \(\alpha' > 0 \) may be obtained from any other \(\alpha > 0 \).

In Sect. 4 we show that the vector fields generate an infinitesimal action of the non-zero quaternions \(\mathbb{H}^* \) and that the quotient \(\mathcal{N}^4n = M/\mathbb{H}^* \) carries a QKT metric. It turns out, Sect. 5, that this QKT manifold comes equipped with an instanton connection on its bundle \(\Lambda^* \mathcal{N}^4n T^* \) of volume forms. Locally QKT metrics inducing instanton connections exist on any quaternionic manifold, and from such a geometry in dimension \(4n \) we construct in Sect. 6 HKT metrics with \(D(2, 1; \alpha) \)-symmetry in dimension \(4n + 4 \). As an interesting special case, we obtain HKT metrics with \(D(2, 1; 1) \)-symmetry over each quaternionic Kähler manifold of negative scalar curvature.

Both the discussion of the parameter change for \(D(2, 1; \alpha) \)-symmetry and the bundle constructions relating QKT and HKT geometries naturally introduce pseudo-Riemannian structures. We therefore deal with HKT geometry in this generality from the outset.

If one sets the torsion to zero in this paper, then one recovers the constructions of [13], relating quaternionic Kähler manifolds to hyperKähler manifolds with \(D(2, 1; -2) \)-symmetry and hyperKähler potentials. This case is relevant to the discussion of superconformal symmetry in \(N = 2 \) quantum mechanics [3].

2. Potentials and Superconformal Symmetry

Let \((M, g, I, J, K)\) be an HKT manifold of dimension \(4m \) and signature \((4p, 4q)\). This means that \(I, J \) and \(K \) are integrable complex structures satisfying the quaternion identities, \(g \) is a hyper-Hermitian metric of signature \((4p, 4q)\) and there is an \(\text{Sp}(p, q) \)-connection \(\nabla \) whose torsion tensor

\[
c(X, Y, Z) = g(X, T(Y, Z))
\]

is totally skew, where \(T(X, Y) = \nabla_X Y - \nabla_Y X - [X, Y] \). The integrability of \(I \) implies

\[
T(IX, IY) = IT(IX, Y) = IT(X, IY) = T(X, Y) = 0 \tag{2.1}
\]

and that \(c \) is of type \((2, 1)_I + (1, 2)_I\). Note that for a given \((g, I, J, K)\) there is at most one HKT connection \(\nabla \), sometimes called the Bismut connection.

We set \(F_I(X, Y) = g(IX, Y) \) and define \(d_I \) on \(r \)-forms by

\[
d_I \beta = (-1)^r I dI \beta,
\]

where \(I \beta = \beta(-I, \ldots, -I \cdot) \). Similar forms and operators are defined for \(J \) and \(K \). With these conventions the torsion satisfies

\[
-c = d_I F_I = d_J F_J = d_K F_K.
\]

A potential for an HKT structure is a function such that

\[
F_I = \frac{1}{2}(dd_I + d_I d_K)\mu, \quad \text{etc.}
\]

Note that \(dd_I \mu = dI d\mu \) and \(dJ dK \mu = -JdID\mu \).

In [5, Cor. 4] it is shown that locally any hypercomplex manifold \((M, I, J, K)\) admits a compatible HKT metric with potential. On the other hand, Michelson and Strominger