A Normal Form for the Schrödinger Equation with Analytic Non-linearities

M. Procesi1,*, C. Procesi2

1 Department of Mathematics, University of Naples Federico II, Naples 80138, Italy
2 Department of Mathematics, University of Rome, La Sapienza, Rome 00185, Italy.
E-mail: procesi@mat.uniroma1.it

Received: 15 January 2011 / Accepted: 29 November 2011
Published online: 25 April 2012 – © Springer-Verlag 2012

Abstract: We discuss a class of normal forms of the completely resonant non-linear Schrödinger equation on a torus. We stress the geometric and combinatorial constructions arising from this study.

Contents

1. Introduction 502
 1.1 Preliminaries 503
 1.2 The object of this paper 504
 1.3 Some related literature 504
 1.4 Description of the paper 505
2. Hamiltonian Formalism 507
 2.1 One step of Birkhoff normal form 508
 2.2 Tangential sites in action–angle coordinates 511
3. Main Dynamical Results 512
4. A Normal Form 515
5. Matrix Description of $ad(N)$ 521
 5.1 The spaces $V_{i,j}$ and $F_{0,1}$ 521
6. Graph Representation 522
 6.1 Geometric graph Γ_{geo}^S 525
 6.2 Geometric results 527
7. A Formalization of the Graphs 528
 7.1 The linear momentum constraints 528
 7.2 The quadratic energy constraints 529
8. Graph Isomorphism 531

* Supported by ERC grant “New connections between dynamical systems and Hamiltonian PDEs” and partially by the PRIN2009 grant “Critical Point Theory and Perturbative Methods for Nonlinear Differential Equations”.

\[\text{Digital Object Identifier (DOI) 10.1007/s00220-012-1483-2} \]
1. Introduction

In this paper we exhibit a normal form, with remarkable integrability properties, for the completely resonant non-linear Schrödinger equation on the torus \mathbb{T}^n, $n \in \mathbb{N}$ (NLS for brevity):

$$-i u_t + \Delta u = \kappa |u|^{2q} u + \partial_{\bar{u}} G(|u|^2), \quad q \geq 1 \in \mathbb{N}. \quad (1)$$

where $u := u(t, \varphi), \varphi \in \mathbb{T}^n$ and $G(\alpha)$ is a real analytic function whose Taylor series starts from degree $q + 2$. The case $q = 1$ is of particular interest and is usually referred to as the cubic NLS.

It is well known that Eq. 1, the NLS, can be written as an infinite dimensional Hamiltonian dynamical system.

It has the energy $H = \int_{\mathbb{T}^n} (|\nabla (u)|^2 + \kappa (q + 1)^{-1} |u|^{2(q+1)} + G(|u|^2)) \frac{d\phi}{(2\pi)^n}$, the moment $M = \int_{\mathbb{T}^n} \bar{u}(\varphi) \nabla u(\varphi) \frac{d\phi}{(2\pi)^n}$ and the mass $L = \int_{\mathbb{T}^n} |u(\varphi)|^2 \frac{d\phi}{(2\pi)^n}$, as integrals of motion.

Passing to the Fourier representation

$$u(t, \varphi) := \sum_{k \in \mathbb{Z}^n} u_k(t)e^{i(k, \varphi)}, \quad (2)$$

we have, up to a rescaling of u and of time, in coordinates:

$$H := \sum_{k \in \mathbb{Z}^n} |k|^2 u_k \bar{u}_k \pm \sum_{k_1, k_2, k_3 \in \mathbb{Z}^n} u_{k_1} \bar{u}_{k_2} u_{k_3} \bar{u}_{k_4} \cdots u_{k_{2q+1}} \bar{u}_{k_{2q+2}} + \int_{\mathbb{T}^n} G(|u|^2) \frac{d\phi}{(2\pi)^n}. \quad (3)$$

We fix the sign to be $+$ since in our treatment it does not play any particular role.