The Sum Over Topological Sectors and θ in the 2+1-Dimensional $\mathbb{C}P^1$ σ-Model

Daniel S. Freed1, Zohar Komargodski2,3$^\dag$, Nathan Seiberg4

1 Department of Mathematics, University of Texas, Austin, TX 78712, USA.
 E-mail: dafr@math.utexas.edu
2 Department of Particle Physics and Astrophysics, Weizmann Institute of Science, Rehovot, Israel
3 Simons Center for Geometry and Physics, Stony Brook University, Stony Brook, NY, USA.
 E-mail: zohar.komargodski@weizmann.ac.il
4 School of Natural Sciences, Institute for Advanced Study, Princeton, NJ 08540, USA.
 E-mail: seiberg@ias.edu

Received: 26 August 2017 / Accepted: 2 December 2017
Published online: 30 January 2018 – © Springer-Verlag GmbH Germany, part of Springer Nature 2018

Abstract: We discuss the three spacetime dimensional $\mathbb{C}P^N$ model and specialize to the $\mathbb{C}P^1$ model. Because of the Hopf map $\pi_3(\mathbb{C}P^1) = \mathbb{Z}$ one might try to couple the model to a periodic θ parameter. However, we argue that only the values $\theta = 0$ and $\theta = \pi$ are consistent. For these values the Skyrmions in the model are bosons and fermions respectively, rather than being anyons. We also extend the model by coupling it to a topological quantum field theory, such that the Skyrmions are anyons. We use techniques from geometry and topology to construct the $\theta = \pi$ theory on arbitrary 3-manifolds, and use recent results about invertible field theories to prove that no other values of θ satisfy the necessary locality.

1. Introduction

The functional integral definition of quantum field theory involves integrating over all possible configurations with a certain weight. It is often the case that the configuration space in the Euclidean functional integral breaks into topologically distinct sectors labeled by ν. (These sectors and their characterization can depend on the Euclidean spacetime the theory is placed on.) Then, defining Z_ν as the sum over the configurations in the sector ν, the total functional integral is given by a linear combination of Z_ν

$$Z = \sum_\nu a_\nu Z_\nu. \quad (1.1)$$

The possible values of the coefficients a_ν are constrained by various consistency conditions like locality and unitarity. Different consistent choices of the a_ν correspond to distinct quantum field theories. An interesting problem is to find all possible consistent values of these coefficients, thus finding all possible theories constructed out of the building blocks Z_ν.

A well known example is the quantum mechanical system of a single degree of freedom on a circle. Here, with Euclidean compact time the configuration space is the
space of maps $S^1 \to S^1$ and ν is the winding number. In this case the coefficients a_ν are constrained to be determined by a single periodic parameter θ as

$$a_\nu = e^{i\nu \theta}. \quad (1.2)$$

Another example is the 4d pure $SU(N)$ gauge theory, where ν is the instanton number and again we have (1.2). In these two cases we can express ν as an integral of a local gauge invariant density and we can interpret (1.2) as arising from a term in the fundamental Lagrangian. In many situations ν cannot be written as an integral over a local density, but still an expression like (1.2) exists. A typical example is the 1 + 1-dimensional $SO(3)$-gauge theory, where ν is defined modulo 2 as the second Stiefel-Whitney class of a principal $SO(3)$-bundle, and correspondingly the allowed values of θ in (1.2) are 0 and π.

Locality and unitarity do not require a_ν to be the exponential of the integral of a local density, but rather they must be the partition functions of an invertible field theory [1]. In physics terms, $\log a_\nu$ can be thought of as an action of a classical field theory, which is local, but not necessarily an integral of a local density. Recent progress in understanding the structure of invertible theories can be brought to bear on the problem of combining Z_ν into a well-defined theory.

One of the goals of this paper is to clarify this sum over sectors in the 2+1 dimensional nonlinear \mathbb{CP}^1 σ-model. Placing the theory on S^3 and using the Hopf invariant, which is associated with $\pi_3(\mathbb{CP}^1) = \mathbb{Z}$, the label ν in (1.1) runs over the integers. It labels an instanton number. Then one might think that (1.2) is a consistent prescription for how to sum over these sectors and the theory is labeled by a continuous periodic parameter θ. Explicitly, let $\vec{n}^2 = 1$ be a coordinate on $\mathbb{CP}^1 \simeq S^2$. Define $\text{Hopf}(\vec{n})$ to be a density such that $\int d^3x \, \text{Hopf}(\vec{n}) \in \mathbb{Z}$ is the Hopf invariant. Then, we can modify the standard Euclidean Lagrangian for \vec{n} by adding a theta term (see e.g. [2,3] and many followup papers where this term was discussed) as follows

$$L = \frac{f}{2} (\partial \vec{n})^2 + i \theta \text{Hopf}(\vec{n}), \quad (1.3)$$

with a dimensionful parameter f. In this presentation it would seem that any θ is allowed and only $\theta \mod 2\pi$ matters. A hint that something might be wrong with this θ term comes from the fact that $\text{Hopf}(\vec{n})$ does not have a local expression in terms of \vec{n}. Furthermore, it is unclear how to define this theta term on other three-manifolds. Indeed, it has been known that $\theta = 0, \pi$ naturally arise in simple situations but not the other values of θ. See e.g. [4] and references therein.

We will prove that, in fact, only $\theta = 0$ and π are consistent. Furthermore, we will explicitly construct the corresponding mod 2 invariant on arbitrary spin three-manifolds. We will also present variants of the \mathbb{CP}^1 model, where the low-energy \mathbb{CP}^1 Goldstone bosons are coupled to a nontrivial TQFT leading to additional long range interactions such that θ behaves as if it has other values. These other values of θ are now allowed because we have modified the theory in the deep infrared. In condensed matter language, we could, for example, think about that as coupling the \mathbb{CP}^1 theory to a fractional quantum hall state.

1 The authors of [5] noted that certain microscopic 2+1 dimensional models of spins lead only to the values $\theta = 0$ and $\theta = \pi$. The same is true in 1+1 dimensions for such microscopic models. But unlike our claimed result in 2+1 dimensions, in 1+1 dimensions the \mathbb{CP}^1 model is well defined with arbitrary θ and not just at $\theta = 0, \pi$.

2 We thank P. Wiegmann for many useful discussions.