Dichotomy for the Hausdorff dimension of the set of nonergodic directions

Yitwah Cheung · Pascal Hubert · Howard Masur

Received: 3 March 2009 / Accepted: 16 August 2010 / Published online: 22 September 2010 © Springer-Verlag 2010

Abstract Given an irrational $0 < \lambda < 1$, we consider billiards in the table P_λ formed by a $\frac{1}{2} \times 1$ rectangle with a horizontal barrier of length $\frac{1-\lambda}{2}$ with one end touching at the midpoint of a vertical side. Let $\text{NE}(P_\lambda)$ be the set of θ such that the flow on P_λ in direction θ is not ergodic. We show that the Hausdorff dimension of $\text{NE}(P_\lambda)$ can only take on the values 0 and $\frac{1}{2}$, depending on the summability of the series $\sum_k \frac{\log \log q_{k+1}}{q_k}$ where $\{q_k\}$ is the sequence of denominators of the continued fraction expansion of λ. More specifically, we prove that the Hausdorff dimension is $\frac{1}{2}$ if this series converges, and 0 otherwise. This extends earlier results of Boshernitzan and Cheung.

First and third authors supported by NSF DMS-0701281 and DMS-0905907, respectively and second author supported by ANR-06-BLAN-0038.

Y. Cheung (✉)
Department of Mathematics, San Francisco State University, San Francisco, CA 94132, USA
e-mail: ycheung@sfsu.edu

P. Hubert
LATP, case cour A, Faculté de Saint Jérôme, Avenue Escadrille Normandie Niemen, 13397 Marseille Cedex 20, France
e-mail: hubert@cmi.univ-mrs.fr

H. Masur
Department of Mathematics, University of Chicago, 5734 S. University Avenue, Chicago, IL 60637, USA
e-mail: masur@math.uchicago.edu
1 Introduction

In 1969, Veech [17] found examples of skew products over a rotation of the circle that are minimal but not uniquely ergodic. These were turned into interval exchange transformations in [9]. Masur and Smillie gave a geometric interpretation of these examples (see for instance [14]) which may be described as follows. Let P_λ denote the billiard in a $\frac{1}{2} \times 1$ rectangle with a horizontal barrier of length $\alpha = \frac{1-\lambda}{2}$ based at the midpoint of a vertical side. There is a standard unfolding procedure which turns billiards in this polygon into flows along parallel lines on a translation surface. See Fig. 1.

The associated translation surface in this case is a double cover of a standard flat torus of area one branched over two points z_0 and z_1 a horizontal distance λ apart on the flat torus. See Fig. 2. We denote it by (X, ω).

The linear flows on this translation surface preserve Lebesgue measure. What Veech showed in these examples is that given θ with unbounded partial quotients in its continued fraction expansion, there is a λ such that the flow on P_λ in direction with slope θ is minimal but not uniquely ergodic.

Let $\text{NE}(P_\lambda)$ denote the set of nonergodic directions, i.e. those directions for which Lebesgue measure is not ergodic. It was shown in [14] that $\text{NE}(P_\lambda)$ is uncountable if λ is irrational. When λ is rational, a result of Veech [18] implies that minimal directions are uniquely ergodic; thus $\text{NE}(P_\lambda)$ is the set

![Unfolding the table P_λ](image.png)