Alberto Cavicchioli · Fulvia Spaggiari

Remarks on a paper of M. Ochiai

Received: 13 July 2005
Published online: 3 June 2006

Abstract. This note is related to a nice short paper of M. Ochiai. We prove in a very fast way that the two-parameter family of Heegaard diagrams, constructed by Ochiai, encodes the genuine three-sphere. The result is obtained, up to isotopy, by using a sequence of only three moves in this order: a Whitehead–Zieschang reduction, a band sum and a cancellation of a handle.

1. Introduction

In the short nice paper [5], Ochiai constructed a Heegaard diagram $\psi = (F; v, w)$ of the three-sphere which induces the following balanced presentation of the trivial group:

$$H = \langle X, Y, Z : XZY^2Z^{-1}X^{-1}(Y^{-1}Z^{-1})^3 = 1, \quad \text{with} \quad ZY(XZ)^4Y^{-1}Z^{-1}X^{-3} = 1, \quad XZY^3Z^{-1}X^{-1}(Y^{-1}Z^{-1})^4 = 1 \rangle.$$

The diagram ψ has neither waves nor pairs of complementary handles. So it is not directly reducible by a wave move or by a Singer move of type III’ (see [4, 6]). Moreover, ψ is a counterexample to the Whitehead conjecture [8] which asserts that all Heegaard diagrams of S^3, other than the canonical one, have always waves; this is proved to be true for Heegaard diagrams of genus two (see [4]). The counterexample also disproves the algorithm A of [7] for recognizing S^3 among closed three-manifolds (the algorithm works in the case of genus two, as proved again in Homma et al. [4]). The diagram ψ was related in Bandieri and Predieri [1] to special colored graphs, called crystallizations. The authors constructed a crystallization (Γ, γ) of S^3 having H as an associated presentation of the fundamental group with respect to a suitable choice of generators and relators. Moreover, ψ is one among the Heegaard diagrams associated with Γ (we refer also to Cavicchioli [2] for relations among Heegaard diagrams, spines and crystallizations). Then they proved that at least one among the remaining Heegaard diagrams, associated with Γ, has some pairs of complementary handles. This permits to reduce it by Singer

A. Cavicchioli (✉) · F. Spaggiari: Dipartimento di Matematica, Università di Modena e Reggio Emilia, Via Campi 213/B, 41100 Modena, Italy.
e-mail: cavicchioli.alberto@unimore.it

e-mail: spaggiari.fulvia@unimore.it

DOI: 10.1007/s00229-006-0009-7
moves of type III’ to the canonical diagram of S^3. However, the construction was based on a long procedure which also uses a computer program for simplifying crystallizations (see [1], p. 440).

As remarked in Ochiai [5], pp. 872–873, the diagram ψ does not permit us to reduce directly the Heegaard genus of it, but permits us to construct a two-parameter family of Heegaard diagrams $\psi(n, m)$ having arbitrary many intersections of one complete system of meridians and another one. Such Heegaard diagrams induce the following balanced presentations of the trivial fundamental group (see [5], p. 873):

$$H(n, m) = \langle X, Y, Z : XZ^nY^{-1}Z^{-1}X^{-1}(Y^{-1}Z^{-1})^n = 1, \quad ZY(XZ)^{m-1}Y^{-1}Z^{-1}X^{-m} = 1, \quad XZ^nY^{-1}Z^{-1}(Y^{-1}Z^{-1})^{n+1} = 1 \rangle.$$

Of course, we have $\psi = \psi(3, 3)$ and $H = H(3, 3)$. The construction method of Ochiai [5] permits us to make homotopy three-spheres with complicated presentations of the fundamental group such that they have Heegaard diagrams of genus three, and might be homotopy three-spheres other than the three-sphere. This however is not the case of the diagrams $\psi(n, m)$. In fact, we will prove the following result:

Theorem. For any $n, m \geq 3$, let $\psi(n, m)$ be the two-parameter Heegaard diagrams of genus three, depicted in Fig. 1, which induce the Ochiai presentations $H(n, m)$ of the trivial fundamental group. Then $\psi(n, m)$ can be directly reduced, up to isotopy, to the canonical Heegaard diagram of genus two of the genuine three-sphere by a sequence of three moves in this order: a Whitehead–Zieschang reduction, a band sum (that is, a Singer move of type II), and a cancellation of a handle.

2. Proof of the theorem

We follow essentially notation and terminology of Ochiai [5]. Let $\psi(n, m)$ denote $(F; v, w)$. Then one complete system of meridians $v = v(n, m) = (v_1, v_2, v_3)$ is illustrated in Fig. 1. The Heegaard surface F (which is a closed orientable surface of genus 3) is obtained from the diagram in Fig. 1 by identifying meridians v_i with \tilde{v}_i, for every $i = 1, 2, 3$. The meridians are to be paired respecting the orientations, and so that the marked points in Fig. 1 match up. Let C_i and \tilde{C}_i denote the meridian disks whose boundaries are v_i and \tilde{v}_i, respectively. At the same time, another complete system of meridians $w = w(n, m) = (w_1, w_2, w_3)$ arises from the arcs of the diagram which connect points lying on C_i and/or \tilde{C}_i. Let X, Y and Z be the generators of the fundamental group which are represented by the meridians v_1, v_2 and v_3, respectively. Walking along the meridians w_i coherently with their orientations yields exactly the relations of the balanced group presentation $H(n, m)$. Now we are going to modify the diagram $\psi(n, m)$ into another one $\varphi(n, m) = (F; a, b)$ of genus three which represents the same manifold. Let a_2 be the simple closed curve