Grzegorz Zwara

Codimension two singularities for representations of extended Dynkin quivers

Received: 19 September 2006
Published online: 4 May 2007

Abstract. Let M and N be two representations of an extended Dynkin quiver such that the orbit O_N of N is contained in the orbit closure \overline{O}_M and has codimension two. We show that the pointed variety (\overline{O}_M, N) is smoothly equivalent to a simple surface singularity of type A_n, or to the cone over a rational normal curve.

1. Introduction and the main results

Throughout the paper, k denotes an algebraically closed field of arbitrary characteristic, and $Q = (Q_0, Q_1, s, e)$ is a finite quiver, i.e. Q_0 is a finite set of vertices and Q_1 is a finite set of arrows $\alpha : s(\alpha) \rightarrow e(\alpha)$, where $s(\alpha)$ and $e(\alpha)$ denote the starting and the ending vertex of α, respectively. A representation V of Q over k is a collection $(V(i); i \in Q_0)$ of finite dimensional k-vector spaces together with a collection $(V(\alpha) : V(s(\alpha)) \rightarrow V(e(\alpha)); \alpha \in Q_1)$ of k-linear maps. A morphism $f : V \rightarrow W$ between two representations is a collection $(f(i) : V(i) \rightarrow W(i); i \in Q_0)$ of k-linear maps such that

$$f(e(\alpha)) \circ V(\alpha) = W(\alpha) \circ f(s(\alpha))$$

for all $\alpha \in Q_1$.

The dimension vector of a representation V of Q is the vector

$$\text{dim } V = (\dim_k V(i)) \in \mathbb{N}^{Q_0}.$$

We denote the category of representations of Q by $\text{rep}(Q)$, and for any vector $d = (d_i) \in \mathbb{N}^{Q_0}$

$$\text{rep}_Q(d) = \prod_{\alpha \in Q_1} M_{d_e(\alpha) \times d_s(\alpha)}(k)$$

is the vector space of representations V of Q with $V(i) = k^{d_i}, i \in Q_0$. The group

$$\text{GL}(d) = \prod_{i \in Q_0} \text{GL}_{d_i}(k)$$

G. Zwara: Faculty of Mathematics and Computer Science, Nicolaus Copernicus University, Chopina 12/18, 87-100 Torun, Poland. e-mail: gzwara@mat.uni.torun.pl

Mathematics Subject Classification (2000): Primary 14B05; Secondary 14L30, 16G20

DOI: 10.1007/s00229-007-0093-3
acts on $\text{rep}_Q(d)$ by

$$(g_i \star V)(\alpha) = g_{e(\alpha)} \cdot V(\alpha) \cdot g_{s(\alpha)}^{-1}.$$

Given a representation V of Q, we denote by O_V the $\text{GL}(d)$-orbit in $\text{rep}_Q(d)$ consisting of the representations isomorphic to V, where $d = \dim V$. An interesting problem is to study singularities of the Zariski closure \overline{O}_V of an orbit O_V in $\text{rep}_Q(d)$.

Following Hesselink [7, Sect. 1.7] we call two pointed varieties (X, x_0) and (Y, y_0) smoothly equivalent if there are smooth morphisms $f : Z \to X$, $g : Z \to Y$ and a point $z_0 \in Z$ with $f(z_0) = x_0$ and $g(z_0) = y_0$. This is an equivalence relation and the equivalence classes will be denoted by $\text{Sing}(X, x_0)$ and called the types of singularities. Obviously the regular points of the varieties form one type of singularity, which we denote by Reg. Let M and N be representations in $\text{rep}_Q(d)$ such that M degenerates to N (N is a degeneration of M), i.e. $O_N \subseteq \overline{O}_M$. We shall write $\text{Sing}(M, N)$ for $\text{Sing}(\overline{O}_M, n)$, where n is an arbitrary point of O_N, and denote by $\text{codim}(M, N)$ the codimension of O_N in \overline{O}_M. We refer to [1, 3, 13–17] for results in this direction. Some of the results are expressed in terms of finite dimensional modules over finitely generated associative k-algebras, so it needs an explanation: given a representation V of Q, we associate a (left) module \tilde{V} over the path algebra kQ of Q, whose underlying vector space is $\bigoplus_{i \in Q_0} V(i)$. This leads to an equivalence between $\text{rep}(Q)$ and the category of finite dimensional kQ-modules. Moreover, the equivalence preserves degenerations (of representations and of modules, respectively) as well as their codimensions and types of singularities (see [2]). Applying [15, Theorem 1.1] (and the above geometric equivalence between representations of Q and modules over kQ), we get $\text{Sing}(M, N) = \text{Reg}$ if $\text{codim}(M, N) = 1$.

We assume now that $\text{codim}(M, N) = 2$. It was shown recently ([16, Thm.1.3]) that $\text{Sing}(M, N) = \text{Reg}$ provided Q is a Dynkin quiver. This leads to a natural question about $\text{Sing}(M, N)$ if Q is an extended Dynkin quiver, i.e. one of the following quivers

\[\begin{align*}
\tilde{A}_n, n \geq 0 : & \quad \bullet \quad \cdots \quad \bullet \\
\tilde{D}_n, n \geq 4 : & \quad \bullet \quad \bullet \quad \cdots \quad \bullet \\
\tilde{E}_6 : & \quad \bullet \\
\tilde{E}_7 : & \quad \bullet \quad \cdots \quad \bullet \\
\tilde{E}_8 : & \quad \bullet \quad \cdots \quad \bullet
\end{align*}\]