Constructing metrics on a 2-torus with a partially prescribed stable norm

Eran Makover, Hugo Parlier, Craig J. Sutton

Abstract. A result of Bangert states that the stable norm associated to any Riemannian metric on the 2-torus T^2 is strictly convex. We demonstrate that the space of stable norms associated to metrics on T^2 forms a proper dense subset of the space of strictly convex norms on \mathbb{R}^2. In particular, given a strictly convex norm $\| \cdot \|_\infty$ on \mathbb{R}^2 we construct a sequence $\langle \| \cdot \|_j \rangle_1^\infty$ of stable norms that converge to $\| \cdot \|_\infty$ in the topology of compact convergence and have the property that for each $r > 0$ there is a $N = N(r)$ such that $\| \cdot \|_j$ agrees with $\| \cdot \|_\infty$ on $\mathbb{Z}^2 \cap \{(a, b) : a^2 + b^2 \leq r\}$ for all $j \geq N$. Using this result, we are able to derive results on multiplicities which arise in the minimum length spectrum of 2-tori and in the simple length spectrum of hyperbolic tori.

1. Introduction

Given a closed n-dimensional manifold M with first Betti-number $b = b_1(M)$, we let $H_1(M; \mathbb{Z})_{\mathbb{R}}$ denote the collection of integral classes in the b-dimensional real vector space $H_1(M; \mathbb{R})$. Then $H_1(M; \mathbb{Z})_{\mathbb{R}}$ is a co-compact lattice in $H_1(M; \mathbb{R})$. Letting $T \simeq \mathbb{Z}_{m_1} \times \cdots \times \mathbb{Z}_{m_q}$ denote the torsion subgroup of $H_1(M; \mathbb{Z}) \simeq \mathbb{Z}^b \times T$, we see that $H_1(M; \mathbb{Z})_{\mathbb{R}}$ can be identified with $H_1(M; \mathbb{Z})/T$ via the surjective homomorphism $\phi : H_1(M; \mathbb{Z}) \rightarrow H_1(M; \mathbb{Z})_{\mathbb{R}}$ given by

$$\sum_{i=1}^b z_i h_i + t \mapsto \left(\sum_{i=1}^b z_i h_i \right) \otimes \mathbb{Z} 1,$$

where $\{h_1, \ldots, h_b\}$ is some \mathbb{Z}-basis for $H_1(M; \mathbb{Z})$, the z_i’s are integers and $t \in T$. Now, let $\Psi : \pi_1(M) \rightarrow H_1(M; \mathbb{Z})$ denote the Hurewicz homomorphism [13], then the regular covering $p_{\text{Abel}} : M_{\text{Abel}} \rightarrow M$ of M corresponding to $\ker(\Psi) = [\pi_1(M), \pi_1(M)]$ is the universal abelian covering of M. It is universal in the sense that it covers any other normal covering for which the deck transformations form
an abelian group. The universal torsion-free abelian cover \(p_{tor} : M_{tor} \to M \) corresponds to the normal subgroup \(\Psi^{-1}(T) < \pi_1(M) \): it covers all other normal coverings for which the group of deck transformations is torsion-free and abelian. Under the above identifications we see that the group of deck transformations of \(M_{tor} \to M \) is given by the lattice \(H_1(M; \mathbb{Z})_{\mathbb{R}} \). If \(M \) has positive first Betti number, then to each metric \(g \) we may associate a geometrically significant norm \(\| \cdot \|_s \) on \(H_1(M; \mathbb{R}) \) in the following manner.

For each \(h \in H_1(M; \mathbb{Z})_{\mathbb{R}} \cong \mathbb{Z}^b \leq H_1(M; \mathbb{R}) \) let
\[
f(h) = \inf \{ L_g(\sigma) : \sigma \text{ is a smooth loop representing the class } h \},
\]
where \(L_g \) is the length functional associated to the Riemannian metric \(g \) on \(M \).
Then, for each \(n \in \mathbb{N} \), we let \(f_n : \frac{1}{n} H_1(M; \mathbb{Z})_{\mathbb{R}} \to \mathbb{R}_+ \) be given by
\[
f_n(h) = \frac{1}{n} f(nh).
\]
It can be seen that the \(f_n \)'s converge uniformly on compact sets to a norm \(\| \cdot \|_s \) on \(H_1(M; \mathbb{R}) \) that is known as the stable norm of \(g \) [3]. In particular, if \(\{v_n\}_{n \in \mathbb{N}} \) is a sequence in \(H_1(M; \mathbb{Z})_{\mathbb{R}} \) such that \(\lim_{n \to \infty} \frac{v_n}{n} = v \in H_1(M; \mathbb{R}) \), then
\[
\|v\|_s = \lim_{n \to \infty} \frac{f(v_n)}{n}.
\]
An integral class \(v \in H_1(M; \mathbb{Z})_{\mathbb{R}} \) is said to be stable if there is an \(n \in \mathbb{N} \) such that \(\|v\|_s = f_n(v) = \frac{f(nv)}{n} \).

Intuitively, the stable norm \(\| \cdot \|_s \) describes the geometry of the universal torsion-free abelian cover \((M_{tor}, g_{tor}) \) in a manner where the fundamental domain of the \(H_1(M; \mathbb{Z})_{\mathbb{R}} \)-action appears to be arbitrarily small. Indeed, for each \(n \in \mathbb{N} \), \(f_n \) is a (pseudo-)norm on the discrete group \(H_1(M; \mathbb{Z})_{\mathbb{R}} \) which illustrates the geometry of the fundamental domain of the \(H_1(M; \mathbb{Z})_{\mathbb{R}} \)-action on \((M_{tor}, g_{tor}) \) when scaled by a factor of \(\frac{1}{n} \). And one can check that the sequence \(((H_1(M; \mathbb{Z})_{\mathbb{R}}, f_n))_{n=1}^{\infty} \) of normed linear spaces converge to \((H_1(M; \mathbb{R}), \| \cdot \|_s) \) in the Gromov-Hausdorff sense (cf. [11, p. 250]).

Now, let \(p : (N, h) \to (M, g) \) be a Riemannian covering. We will say that a non-constant geodesic \(\gamma : \mathbb{R} \to (M, g) \) is \(p \)-minimal (or minimal with respect to \(p \)) if for some and, hence, every lift \(\tilde{\gamma} : \mathbb{R} \to N \) of \(\gamma \), the geodesic \(\tilde{\gamma} \) is distance minimizing between any two of its points. That is, \(\gamma \) is \(p \)-minimal if for any \(t_1 \leq t_2 \) we have
\[
L_g(\tilde{\gamma}([t_1, t_2])) = d_N(\tilde{\gamma}(t_1), \tilde{\gamma}(t_2)).
\]
In the event that \(p \) is the universal Riemannian covering we will refer to \(p \)-minimal geodesics as minimal, and when \(\gamma \) is minimal with respect to the universal abelian cover \(p_{abel} : (M_{Abel}, h) \to (M, g) \) we will say that \(\gamma \) is an abelian minimal geodesic. In the case where \(\pi_1(M) \) is abelian—e.g., \(M \) is a torus—these two definitions coincide.

An interesting application of the stable norm \(\| \cdot \|_s \) is that characteristics of its unit ball \(B \subset H_1(T^2; \mathbb{Z}) \) can be used to deduce the existence (and properties) of minimal abelian geodesics. For instance, we have the following result due to Bangert.