Modulation by PKA of the Hyperpolarization-activated Current (I\textsubscript{h}) in Cultured Rat Olfactory Receptor Neurons

G. Vargas, M.T. Lucero
Department of Physiology, University of Utah, School of Medicine, 410 Chipeta Way, Salt Lake City, UT 84108-1297, USA

Received: 16 November 2001/Revised: 28 March 2002

Abstract. The hyperpolarization-activated I\textsubscript{h} channel is modulated by neurotransmitters acting through the cAMP messenger system. In rat olfactory receptor neurons (ORNs), dopamine, by inhibition of adenylyl cyclase, shifts the voltage of half-maximal activation (V\textsubscript{1/2}) of I\textsubscript{h} to more negative potentials and decreases I\textsubscript{h} maximal relative conductance. Whether these effects result from a phosphorylation-dependent mechanism is unclear. Therefore, we used whole-cell patch-clamp recording techniques to study cAMP-dependent phosphorylation via PKA on I\textsubscript{h} in rat ORNs. General protein kinase inhibition (50 nM K252a) produced a hyperpolarizing shift in I\textsubscript{h} V\textsubscript{1/2} and decreased I\textsubscript{h} maximal conductance. Specific inhibition of PKA with H-89 (500 nM) also shifted the V\textsubscript{1/2} of I\textsubscript{h} to more negative potentials, and, in some cells, decreased I\textsubscript{h} maximal conductance. PKA-mediated phosphorylation (cBIMPS, 50 μM) shifted I\textsubscript{h} V\textsubscript{1/2} more positive, modulated the kinetics of I\textsubscript{h} channel activation and increased I\textsubscript{h} peak current amplitude. Internal perfusion of the catalytic subunit of PKA (84 nM) also shifted I\textsubscript{h} V\textsubscript{1/2} positive and this shift was blocked by co-perfusion with PKI (50 nM). These results show that in rat ORNs, the voltage dependence of I\textsubscript{h} activation can be modulated by PKA-dependent phosphorylation. We also show that PKA and other protein kinases may be involved in the regulation of I\textsubscript{h} maximal conductance. Our findings suggest that changes in the phosphorylation state of ORNs may affect resting properties as well as modulate odor sensitivity.

Key words: Olfaction — Hyperpolarization — Protein kinase A — I\textsubscript{h} — Voltage-gated — Phosphorylation

Introduction

The hyperpolarization-activated current (I\textsubscript{h}) is a voltage-gated conductance that was first described as I\textsubscript{f} in the heart (Brown & DiFrancesco, 1980), and as I\textsubscript{h} in central (Halliwell & Adams, 1982; Spain, Schwindt, & Crill, 1987; Pape & McCormick, 1989; Maccaferri et al., 1993) and peripheral neurons (Mayer & Westbrook, 1983; Hestrin, 1987; Pearce & Duchen, 1994; Scroggs et al., 1994), including vertebrate and invertebrate ORNs; (Lynch & Barry, 1991; Corotto & Michel, 1994). The I\textsubscript{h} channel activates upon hyperpolarization of the cell membrane and produces a slowly activating, non-inactivating, inwardly rectifying current. The current is carried by both Na+ and K+ ions, and under normal physiological conditions has a reversal potential more positive than the resting membrane potential (Mayer & Westbrook, 1983; Spain et al., 1987; McCormick & Pape, 1990). Pharmacologically, I\textsubscript{h} is identified by its sensitivity to external Cs+ and relative insensitivity to Ba2+, tetrodotoxin, tetraethylammonium (TEA) and 4-aminopyridine (Mayer & Westbrook, 1983; McCormick & Pape, 1990; Lynch & Barry, 1991; Ludwig et al., 1998). Functionally, I\textsubscript{h} plays important roles in the electrophysiological properties of many neurons. When active, it contributes to the resting membrane potential of central and peripheral neurons (Trotier & Doving, 1996; Bal & McCormick, 1997; Lamas, 1998; Wellner-Kienitz & Shams, 1998; Doan & Kunze, 1999), shapes the patterns of neuronal rhythmic firing and controls cell excitability (McCormick & Pape, 1990; Akasu, Shoji, & Hasuo, 1993; Maccaferri & McBain, 1996; Tabata & Ishida, 1996; Wang, Van den Berg, & Ypey, 1997; Hughes, Cope, & Crunelli, 1998; Lüthi, Bal, & McCormick, 1998; Magee, 1998; Wellner-Kienitz & Shams, 1998). In the heart, it plays a key role in cardiac pacemaking activity by the generation and control of diastolic depolarization.
and spontaneous firing rate of sinoatrial node cells (Brown & DiFrancesco, 1980; DiFrancesco, Ducouret, & Robinson, 1989).

Another property of the I_h channel is its modulation by neurotransmitters and hormones that regulate basal adenyl cyclase activity and intracellular levels of cAMP ([cAMP]). Activation of adenyl cyclase and subsequent increase in [cAMP], result in an enhancement of I_h due to a depolarizing shift in the voltage dependence of half-activation ($V_{1/2}$) of I_h (DiFrancesco et al., 1986; Bobker & Williams, 1989; Banks, Pearce, & Smith, 1993; Ingram & Williams, 1996; Larkman & Kelly, 1997), while adenyl cyclase inhibition and decrease in [cAMP]ₙ produces a decrease in I_h and a hyperpolarizing shift in $V_{1/2}$ (DiFrancesco & Tromba, 1988; Chang & Cohen, 1992; Pape, 1992; Ingram & Williams, 1994; Vargas & Lucero, 1999b).

In bull-frog sympathetic neurons, canine Purkinje fibers and ventricular myocytes, PKA-dependent phosphorylation of the channel underlies the regulation of the voltage dependence of I_h activation (Tokimasa & Akasu, 1990; Chang et al., 1991; Yu, Chang, & Cohen, 1993, 1995). In addition, cloning of members of the I_h channel superfamily showed that a PKA consensus phosphorylation site is present in some members of this channel superfamily (Santoro et al., 1998) and that the native channel can exist in a phosphorylated state (Gauss, Seifert, & Kaupp, 1998).

In contrast to the effects of PKA-dependent phosphorylation on $V_{1/2}$ of I_h, the effects of phosphorylation on I_h maximal conductance (g_{max}) seem to be more variable. In sympathetic neurons, stimulation of adenyl cyclase activity enhanced I_h by increasing its g_{max} and shifting its $V_{1/2}$ to more positive potentials; protein kinase inhibition reversed this enhancement of I_h (Tokimasa & Akasu, 1990). However, in Purkinje fibers, I_h channel phosphorylation regulated only the $V_{1/2}$ of I_h activation; it had no effect on g_{max} of I_h (Chang et al., 1991; Yu et al., 1993). In isolated ventricular myocytes, I_h phosphorylation also produced a positive shift in the I_h activation curve, but it was not clear whether the conductance was also regulated (Yu et al., 1995). Interestingly, in sinoatrial node cells, I_h phosphorylation resulted only in an increase in g_{max} of I_h (Accili, Redaelli, & DiFrancesco, 1997). Therefore, the regulatory effects of phosphorylation on I_h seem to vary among different cell types.

In rat ORNs, dopamine modulates I_h through activation of D_2 dopamine receptors (Vargas & Lucero, 1999b), which results in an inhibition of adenyl cyclase activity and a decrease in [cAMP]ₙ (Mania-Farnell, Farbman & Bruch, 1993; Coronas et al., 1999). Activation of D_2 receptors in rat ORNs produces a hyperpolarizing shift in the $V_{1/2}$ of I_h and a decrease in g_{max} whereas increasing intracellular cAMP produces a depolarizing shift in the $V_{1/2}$ (Vargas & Lucero, 1999b). Whether these modulatory actions of dopamine on I_h are due to decreased cAMP alone or result from a reduction in cAMP-dependent phosphorylation (PKA) is still unclear. Therefore, we used whole-cell, voltage-clamp recording techniques to study the modulatory effects of PKA-mediated phosphorylation on the basal properties of I_h in rat ORNs. We found that PKA regulates the voltage dependence of I_h activation and, in some cells, the I_h g_{max}. These results demonstrate that, in rat ORNs, I_h is modulated by phosphorylation. Since I_h can contribute to the modulation of cell excitability and to spike frequency adaptation during the excitatory response to odorants (Lynch & Barry, 1991), these findings suggest a mechanism by which dopaminergic regulation of [cAMP] and phosphorylation state in ORNs may set resting properties as well as modulate odor sensitivity.

Materials and Methods

Cell Preparation and Culture Conditions

Rat ORNs were dissociated and kept in culture as previously described (Vargas & Lucero, 1999a). Briefly, adult male Simonsen albino rats (~200 g) were handled according to the Policy on Humane Care and Use of Laboratory Animals established by the Public Health Service. Rats were deeply anaesthetized (150 mg/kg ketamine + 15 mg/kg rompun, Mallinekrodt Veterinary, Munde- lein, IL) and sacrificed by decapitation. The olfactory epithelium from the nasal septum and turbinate of one rat was dissected under 100% oxygen vapor saturated with rat Ringer’s, placed in enzyme solution (10 mg/ml bovine serum albumin (BSA), 1 mg/ml collagenase (Gibco BRL; Grand Island, NY), 50 µg/ml deoxyribonuclease II and 44 U/ml dispase (Gibco BRL) in divalent cation-free rat Ringer’s (in mm: 145 NaCl, 5.6 KCl, 10 Hepes, 10 glucose, 4 EGTA) pH 7.4, 300 mOs/ml, and incubated with gentle shaking (80 rpm) at 37°C for 45 minutes. Following this incubation period, the tissue was washed with fresh divalent cation-free rat Ringer’s and gently triturated using a fire-polished Pasteur pipette. The resulting cell suspension was filtered, and 200 µl were plated onto Conca- navalin A (10 mg/ml, Sigma type IV)-coated glass coverslips placed in 35-mm petri dishes. Following a 20-minute settling time, 2 ml of culture medium was added to each dish. The dishes were placed at 37°C in a CO₂ incubator until used (2-4 days). The culture medium [Dulbecco’s Modified Eagle Medium (Gibco BRL) supplemented with 100 µM ascorbic acid, 1:100 Insulin-Transferrin-Selenium100 × (Gibco BRL), 5% fetal bovine serum (Gibco BRL), and 2 mm Glutamine, 100 U/ml Penicillin G, 100 mg/ml Streptomycin (Irvine Scientific; Santa Ana, CA)] was replaced daily. Chemicals were purchased from Sigma (St. Louis, MO) unless stated otherwise.

Electrophysiological Recordings

Whole-cell, voltage-clamp recording techniques (Hamill et al., 1981) were performed on rat ORNs kept in culture for up to 4 days. As reported previously (Vargas & Lucero, 1999a, 1999b), no changes in the electrophysiological properties of the cells were observed over time in culture. Electrodes (10–12 MΩ resistance in 25 mm K⁺ (pH Ringer’s) were pulled from thick-walled (0.64 mm) borosilicate filament glass (Sutter Instrument; San Rafael, CA) on a Flaming/Brown P87 puller. Coverslips with adherent cells were placed into the recording chamber and superfused with the external