Electron energy-loss studies of Na_xC_{60} compounds

J.F. Armbruster1, M. Knupfer2, J. Fink2

1Forschungszentrum Karlsruhe, Institut für Nukleare Festkörperphysik, Postfach 3640, D-76021 Karlsruhe, Germany
2Institut für Festkörper- und Werkstoffforschung, Postfach 270016, D-01171 Dresden, Germany

Received: 12 April 1996

Abstract. The crystal and electronic structure of Na_xC_{60} ($4 < x < 10$) has been investigated using electron energy-loss spectroscopy in transmission. Electron scattering experiments confirm that the crystal symmetry remains face centered cubic over the entire intercalation range. The electronic structure shows a close similarity for the Na_xC_{60} and Na_4C_{60} compounds compared to the corresponding K and Rb systems. Upon intercalation to higher sodium to C_{60} doping levels up to 12, i.e., a complete filling of the t_{1u} band.

In this paper we report on studies of thin crystalline Na_xC_{60} films with intercalation levels in the range of $4 \leq x \leq 10$. Electron diffraction measurements reveal the lattice constants and thus, from comparison with [2] and [10], the intercalation levels of the samples could be derived. The electronic structure measured by EELS of the Na_xC_{60} and Na_4C_{60} samples is compared directly with that of the corresponding K, Rb, and Cs stoichiometries. For the higher intercalated samples above Na_4C_{60} theoretical calculations [18] predict additional states below the t_{1u} bands of C_{60}. To test these predictions we studied the Na2p and the C1s core level excitations for the entire intercalation range, which reveal the change of the Na ions and the C_{60} molecules, respectively. Measurements of the low-energy loss function are used to investigate the transitions near the Fermi energy.

PACS: 79.20.Kz; 71.20.−b; 61.46. + w

Introduction

The superconducting properties of intercalated fullerenes have induced many investigations of the crystal and electronic structure of this new class of materials. For the alkali metal intercalated fullerenes the intercalation range up to 6 has been studied intensively [1]. In contrast to the K, Rb, and Cs systems, where the maximum stoichiometry is A_xC_{60} ($\text{A} = \text{K}, \text{Rb}, \text{Cs}$), x-ray diffraction studies of C_{60} intercalated with Na revealed that intercalation up to about 10 could be achieved and that Na_xC_{60} behaves like a solid solution [2]. While these studies show that the crystal structure of Na_xC_{60} remains face centered cubic (fcc) over the entire intercalation range, the electronic structure of the samples is still unclear. From the alkaline-earth fullerides it is known that a charge transfer not only into the t_{1u} but also into the t_{1g} derived states is possible [3–7], also resulting in metallic and superconducting compounds [1]. In addition, photoemission and electron energy-loss spectroscopy (EELS) investigations [8, 9] on C_{60} molecules deposited on alkali metal surfaces reveal doping levels up to 12, i.e., a complete filling of the t_{1u} band.

Experimental

Thin films of pure C_{60} were prepared by evaporation of C_{60} onto KBr single crystals under ultra-high vacuum (UHV) conditions. From previous transmission electron microscopy measurements [11] we know that this procedure yields samples with an average grain size of about 1000 Å. The film thickness was about 1000–1500 Å. These films were floated off in distilled water and mounted onto standard electron microscopy grids. After transferring them into the EELS spectrometer the films were annealed in situ at 570 K for 30 minutes under UHV conditions to remove possible contaminations from the substrate or from the floating process. Subsequent characterization with EELS and electron diffraction did not show any contamination after sample annealing.

Pure sodium was deposited onto these films from carefully degassed commercial getter sources (SAES) under UHV conditions until a composition of Na_xC_{60} was achieved. Subsequently, the samples were annealed at various temperatures and for times from 370 K and 10
Fig. 1. Electron diffraction spectra of Na$_{x}$C$_{60}$ in the range of $4 \leq x \leq 10$. The curves are labelled by the intercalation level x. The reflections expected for a fcc lattice with the lattice constant of 14.59 Å are indicated by the ticks above the bottom axis.

Fig. 2. Na2p absorption edges of Na$_{x}$C$_{60}$ in the range of $4 \leq x \leq 10$. The curves are labelled with the intercalation level x. The peaks are consistent with fcc allowed reflections except two small features at ~ 1.37 Å$^{-1}$ and at ~ 2.09 Å$^{-1}$. In analogy to an earlier assignment in [2], these reflections hint at a highly faulted hcp minority phase. The fcc structure discriminates the samples intercalated with Na from those doped with higher alkali atoms such as K and Rb which have larger ionic radii sufficient to force a transition to a body centered phase. As there are no x-ray data available for both Na$_{21}$C$_{60}$ and Na$_{23}$C$_{60}$, the stoichiometries between Na$_{21}$C$_{60}$ and Na$_{16}$C$_{60}$ were determined by assuming a linear dependence of the lattice constant on the intercalation level. The error in intercalation level resulting from the uncertainty of the lattice constant is estimated to be below ± 0.5.

The electron diffraction and EELS measurements in transmission were performed in a spectrometer with a primary energy of 170 keV and a base pressure of 5×10^{-10} mbar. Details of the spectrometer are given elsewhere [15]. The energy and momentum resolution was 110 meV and 0.03 Å$^{-1}$ for elastic electron scattering experiments and measurements of the loss function at low energies and 140 meV and 0.2 Å$^{-1}$ for the core level excitations, respectively. The low-energy loss spectra have been corrected for quasi-elastic line contributions. We