The Existence of $FrGBT D(4, g^u)'s$

Xiuwen Ma · Zihong Tian

Received: 12 June 2012 / Revised: 3 November 2012 / Published online: 11 January 2013
© Springer Japan 2013

Abstract If the blocks of a $GDD(X, G, A)$ with block size 4, index 3 and type g^u can be arranged into a $(gu)/4 \times (gu)$ array, such that: (1) the main diagonal consists of u empty subarrays of size $g/4 \times g$; (2) the blocks in each column form a partition of $X \setminus G$ for some $G \in G$, while the blocks in each row contains every element of $X \setminus G$ 3 times and no element of G for some $G \in G$, then the design is called a frame generalized balanced tournament design and denoted by $FrGBT D(4, g^u)$. The necessary conditions for the existence of such a design are $u \geq 6$ and $g \equiv 0 (\text{mod} 4)$. In this paper, the sufficiency of these conditions is proved with some possible exceptions.

Keywords GBTDs · Frame GBTDs · GDDs

Mathematics Subject Classification (2000) 05B05

Research is supported by the National Natural Science Foundation of China (Grant Nos. 11071056, 61202434) and Fundamental Research Funds for the Central Universities (Grant No. 2011RC0505).

X. Ma
State Key Laboratory of Networking and Switching Technology,
Beijing University of Posts and Telecommunications,
Beijing 100876, People’s Republic of China

Z. Tian (✉)
College of Mathematics and Information Science, Hebei Normal University,
Shijiazhuang 050024, People’s Republic of China
e-mail: tianzh68@163.com
1 Introduction

Let \(v, \lambda \) be positive integers, \(K \) be a set of positive integers. A *group divisible design*, denoted by \((K, \lambda)\)-GDD, is a triple \((X, \mathcal{G}, \mathcal{B})\), such that:

1. \(X \) is a \(v \)-set;
2. \(\mathcal{G} \) is a collection of nonempty subsets (called *groups*) of \(X \) which partition \(X \);
3. \(\mathcal{B} \) is a collection of subsets (called *blocks*) of \(X \) with \(|\mathcal{B}| \in K\) for any \(B \in \mathcal{B} \), such that every pair of points not contained in a group occurs in exactly \(\lambda \) blocks and no pair of points contained in a group occurs in any block.

The group type of a \((K, \lambda)\)-GDD is the multiset \(T = \{ |G| : G \in \mathcal{G} \} \) and we usually describe it by an exponential notation: type \(a^i b^j \ldots \) denotes that the design has \(i \) groups of size \(a \), \(j \) groups of size \(b \), and so on. When \(K = \{ k \} \), we simply write \(k \) for \(K \).

A \((k, 1)\)-GDD of type \(n^k \) is called a *transversal design* and denoted by \(TD(k, n) \). Denote by \(RTD(k, n) \) a \(1\)-*resolvable transversal design*. The existence of a \(TD(k, n) \) is equivalent to the existence of an \(RTD(k - 1, n) \).

A \((K, \lambda)\)-GDD of type \(1^v \) is called a *pairwise balanced design* and denoted by \(PBD(K, \lambda, v) \).

Let \(g, u, k \) be positive integers, and \(k \mid g, u \geq k + 2 \). For \(0 \leq i, j \leq u - 1 \), define \(R_i = \{ w + (ig/k) : w = 0, 1, \ldots, (g/k) - 1 \} \), \(C_j = \{ s + jg : s = 0, 1, \ldots, g - 1 \} \). \((X, \mathcal{G}, \mathcal{A})\) is a \((k, k - 1)\)-GDD of type \(g^u \), where \(\mathcal{G} = \{ G_1, G_2, \ldots, G_u \} \). If the blocks of \(\mathcal{A} \) can be arranged in to a \(|X|/k \times |X|\) array \(F \) whose rows and columns are indexed by the elements of \(R_0, R_1, \ldots, R_{u - 1} \) and \(C_0, C_1, \ldots, C_{u - 1} \) in turn, such that:

1. Suppose that \(F_i(0 \leq i \leq u - 1) \) are the subarrays indexed by the elements of \(R_i \) and \(G_i \), then \(F_i(0 \leq i \leq u - 1) \) are all empty, that is to say that the main diagonal of \(F \) consists of \(u \) empty subarrays of order \(g/k \times g \);
2. For any \(r \in R_0(0 \leq i \leq u - 1) \), every point of \(X \setminus G_i \) occurs in exactly \(k \) blocks of row \(r \), while any point of \(G_i \) does not occurs in any block of row \(r \);
3. For any \(c \in C_j(0 \leq j \leq u - 1) \), every point of \(X \setminus G_j \) occurs in exactly one block of column \(c \), while any point of \(G_j \) does not occurs in any block of column \(c \), then the design is called a frame generalized balanced tournament design and denoted by \(FrGBT D(k, g^u) \).

The necessary conditions for the existence of such a design are \(u \geq k + 2 \) and \(k \mid g \). The existence of \(FrGBT D(3, g^u) \)s and \(FrGBT D(4, 4^u) \)s have been solved.

Theorem 1 [1] Let \(g, u \) be positive integers with \(g \equiv 0 \pmod{3} \) and \(u \geq 5 \). Then there exists an \(FrGBT D(3, g^u) \) with at most 5 possible exceptions of \((g, u) \in \{(6, 15), (9, 18), (9, 28), (9, 34), (30, 15)\} \).

Theorem 2 [2] Let \(Q_0 = \{19, 21 - 28, 30, 32 - 35, 38 - 40, 45, 47\} \), then for any integer \(u \geq 6 \) and \(u \not\in Q_0 \), there exists an \(FrGBT D(4, 4^u) \).

In this paper, we investigate the existence of \(FrGBT D(4, 4^u) \) for \(g \equiv 0 \pmod{4} \) and \(u \geq 6 \). The sufficiency of the conditions is proved with some possible exceptions.