Factors and Connected Induced Subgraphs

Keiko Kotani
Department of Mathematics, Science University of Tokyo, 26 Wakamiya-cho, Shinjuku-ku, Tokyo 162-0827, Japan. e-mail: k kotani@rs.kagu.sut.ac.jp

Abstract. Let G be a connected graph without loops and without multiple edges, and let p be an integer such that $0 < p < |V(G)|$. Let f be an integer-valued function on $V(G)$ such that $2 \leq f(x) \leq \deg_G(x)$ for all $x \in V(G)$. We show that if every connected induced subgraph of order p of G has an f-factor, then G has an f-factor, unless $\sum_{x \in V(G)} f(x)$ is odd.

1. Introduction

In this paper, we consider only finite undirected graphs. Let G be a graph. We denote by $V(G)$ and $E(G)$ the set of vertices and the set of edges of G, respectively. The order of G is denoted by $|G|$. For disjoint subsets A and B of $V(G)$, we let $E(A,B)$ denote the set of edges joining A and B, and let $e(A,B)$ denote the cardinality of $E(A,B)$. A vertex x is often identified with $\{x\}$; for example, when $x \notin B$, we write $E(x,B)$ for $E(\{x\},B)$. Also a subgraph H of G is often identified with $V(H)$; in particular, we write $G - H$ for $G - V(H)$. For $x \in V(G)$, we denote by $\deg_G(x)$ and by $N_G(x)$ the degree of x in G and the set of the vertices adjacent to x in G; thus if G has no loops and no without multiple edges, $\deg_G(x) = |N_G(x)|$.

For a connected graph G, a vertex x is a cutvertex of G if $G - x$ is disconnected. We call G separable if G has a cutvertex, and nonseparable if it has no cutvertex. When G is separable, a maximal nonseparable subgraph of G is called a block of G, and a block of G which contains exactly one cutvertex of G is called an endblock of G.

Let g and f be integer-valued functions defined on $V(G)$ such that $g(x) \leq f(x)$ for all $x \in V(G)$. A spanning subgraph F of G such that $g(x) \leq \deg_F(x) \leq f(x)$ for all $x \in V(G)$ is called a (g,f)-factor of G. If $g(x) = f(x)$ for all $x \in V(G)$, a (g,f)-factor is called an f-factor. Let $k \geq 1$ be an integer. If $f(x) = k$ for all $x \in V(G)$, an f-factor is called a k-factor. Throughout the rest of this paper, when we say that G is a multigraph, we allow G to have loops and multiple edges, and when we say that G is a graph, we assume that G has no loops and no multiple edges.
Egawa et al. [1] proved the following theorems:

Theorem A. Let G be a multigraph, and p be an integer such that $0 < p < |G|$. Let g,f be integer-valued functions defined on $V(G)$ such that $0 \leq g(x) \leq f(x) \leq \deg_G(x)$ for all $x \in V(G)$. Suppose that every induced submultigraph of order p of G has a (g,f)-factor. Then G has a (g,f)-factor unless $g(x) = f(x)$ for all $x \in V(G)$ and $\sum_{x \in V(G)} f(x)$ is odd.

Theorem B. Let G be a connected multigraph with no loops, and let k and p be positive integers such that $0 < p < |G|$ and $k|G|$ is even. Suppose that $G - H$ has a k-factor for each connected induced subgraph H of order p. Then G has a k-factor.

In this paper, we prove the following result related to the above theorems.

Theorem 1. Let G be a connected graph, and p be an integer such that $0 < p < |G|$. Let f be an integer-valued function on $V(G)$ such that $2 \leq f(x) \leq \deg_G(x)$ for all $x \in V(G)$. Suppose that every connected induced subgraph H of order p of G has an f-factor. Then G has an f-factor unless $\sum_{x \in V(G)} f(x)$ is odd.

We prove several preliminary results in Section 2. In Section 3, we prove Theorem 1 and discuss the necessity of the assumption that $f(x) \geq 2$ for all $x \in V(G)$.

2. Graphs with no f-Factor

The following criterion for the existence of an f-factor is essential for our proof:

Theorem C (Tutte [2]). Let G be a graph, and let f be an integer-valued function on $V(G)$ such that $0 \leq f(x) \leq \deg_G(x)$ for all $x \in V(G)$. Then G has an f-factor if and only if

$$\delta_G(S,T) := \sum_{x \in S} f(x) + \sum_{y \in T} (\deg_{G-S}(y) - f(y)) - h_G(S,T) \geq 0$$

for all disjoint subsets S and T of $V(G)$, where $h_G(S,T)$ denotes the number of components C of $G - S - T$ such that $e(T, V(C)) + \sum_{z \in V(C)} f(z) \equiv 1 \pmod{2}$.

We also make use of the following lemma:

Lemma 1 (Tutte [2]). Under the notation of Theorem C,

$$\delta_G(S,T) \equiv \sum_{x \in V(G)} f(x) \pmod{2}$$

for all disjoint subsets S and T of $V(G)$.

Throughout the rest of this section, we let G be a connected graph, and let f be an integer-valued function on $V(G)$ such that $2 \leq f(x) \leq \deg_G(x)$ for all $x \in V(G)$, $\sum_{x \in V(G)} f(x)$ is even, and G has no f-factor. By Theorem C, there exist disjoint subsets S and T of $V(G)$ such that $\delta_G(S,T) < 0$. Then by Lemma D,