On Independent Cycles in a Bipartite Graph

Hong Wang
Department of Mathematics, The University of Idaho, Moscow, Idaho 83844, USA
e-mail: hwang@uidaho.edu

Abstract. Let $G = (V_1, V_2; E)$ be a bipartite graph with $2k \leq m = |V_1| \leq |V_2| = n$, where k is a positive integer. We show that if the number of edges of G is at least $(2k - 1)(n - 1) + m$, then G contains k vertex-disjoint cycles, unless $e(G) = (2k - 1)(n - 1) + m$ and G belongs to a known class of graphs.

1. Introduction

We discuss only finite simple graphs and use standard terminology and notation from [4] except as indicated. A set of graphs is said to be independent if no two of them have any vertex in common. Corrádi and Hajnal [5] investigated the maximum number of independent cycles in a graph. They proved that a graph G of order $n \geq 3k$ contains k independent cycles provided $\delta(G) \geq 2k$ holds. In particular, when the order of G is exactly $3k$, then G contains k independent triangles. In [11], we considered a similar problem in bipartite graphs. We use $(X, Y; E)$ to denote a bipartite graph with (X, Y) as its bipartition and E as its edge set. A quadrilateral is a cycle of length 4. We proved the following two theorems.

Theorem 1. [11] Let $G = (V_1, V_2; E)$ be a bipartite graph with $|V_1| = |V_2| = n > 2k$, where k is a positive integer. Suppose that the minimum degree of G is at least $k + 1$. Then G contains k independent cycles.

Theorem 2. [11] Let $G = (V_1, V_2; E)$ be a bipartite graph with $|V_1| = |V_2| = 2k$, where k is a positive integer. Suppose that the minimum degree of G is at least $k + 1$. Then G contains $k - 1$ independent quadrilaterals and a path of order 4 such that the path is independent of all the $k - 1$ quadrilaterals.

Moreover, it is also shown in [11] that the conditions on degrees of G in the above theorems are sharp. We conjectured the following.

Conjecture 3. [11] Let $G = (V_1, V_2; E)$ be a bipartite graph with $|V_1| = |V_2| = 2k$, where k is a positive integer. If the minimum degree of G is at least $k + 1$, then G contains k independent quadrilaterals.
Following the above work, we now consider the conditions on the size of a bipartite graph containing \(k \) independent cycles. We say that a bipartite graph has an \((a, b)\)-bipartition if it has a bipartition \((X, Y)\) such that \(|X| = a\) and \(|Y| = b\). To state our result, we define the following classes \(\Sigma_{k,m,n} \) of bipartite graphs for all positive integers \(k, m \) and \(n \) with \(2k \leq m \leq n \).

If \(k = 1 \), then \(\Sigma_{1,m,n} \) contains all trees with an \((m, n)\)-bipartition. If \(k \geq 2 \), then a bipartite graph \(G \) belongs to \(\Sigma_{k,m,n} \) if and only if there exist an \((m, n)\)-bipartition \((X, Y)\) of \(G \) and a subset \(Z \) of \(X \) with \(|X| = m\), \(|Y| = n\) and \(|Z| = 2k - 1\) such that the subgraph of \(G \) induced by \(Y \cup Z \) is a complete bipartite graph (i.e., isomorphic to \(K_{2k-1,m} \)) and each vertex in \(X - Z \) has degree one in \(G \). It is easy to see that each graph in \(\Sigma_{k,m,n} \) has \((2k - 1)(n - 1) + m\) edges but does not have \(k \) independent cycles. In this paper, we prove the following theorem.

Theorem 4. Let \(G = (V_1, V_2; E) \) be a bipartite graph with \(2k \leq m = |V_1| \leq |V_2| = n \), where \(k \) is a positive integer. Suppose that the number of edges of \(G \) is at least \((2k - 1)(n - 1) + m\) and \(G \) does not belong to \(\Sigma_{k,m,n} \). Then \(G \) contains \(k \) independent cycles.

As for general graphs, Andreade and Justesen [3, 8] found the conditions on the size of a graph \(G \) of order \(n \) that ensure the existence of \(k \) independent cycles in \(G \). As pointed out in [3], the arguments in [3, 8] are based on the result of Corrádi and Hajnal [5]. Unlike this, our proof of Theorem 4 is independent of Theorem 1 and Theorem 2. For related results, see [1, 2].

We need the following notation and terminology. Let \(G = (V, E) \) be a graph. The number of edges of \(G \) is denoted by \(e(G) \). For any \(u \in V \), if \(G' \) is a subgraph of \(G \) or a subset of \(V \), we define \(N(u, G') \) to be the set of neighbours of \(u \) which are contained in \(G' \) and let \(d(u, G') = |N(u, G')| \). Thus \(d(u, G) = d(u, V) = |N(u)| \) is the degree \(d(u) \) of \(u \) in \(G \). If \(d(u, G) = 1 \) we say that \(u \) is an endvertex of \(G \). For a subset \(U \) of \(V \), \(G[U] \) is the subgraph of \(G \) induced by \(U \). For two independent subgraphs \(G_1 \) and \(G_2 \) of \(G \), \(e(G_1, G_2) \) is the number of edges of \(G \) between \(G_1 \) and \(G_2 \), i.e., \(e(G_1, G_2) = \sum_{x \in F(G_1)} d(x, G_2) \). For a positive integer \(t \), if we write \(G \supseteq \mathcal{O} \), it means that \(G \) contains a set of \(t \) independent cycles, and by \(G \supseteq k\mathcal{K}_{2,2} \), it means that \(G \) contains a set of \(t \) independent quadrilaterals. If \(G \) is a cycle, its length will be denoted by \(l(G) \).

2. Lemmas

In what follows, \(G = (V_1, V_2; E) \) is a given bipartite graph. The following lemmas except for Lemma 2.4 are adopted from [11].

Lemma 2.1. [11] Let \(C \) be a cycle of \(G \) and \(x \) a vertex of \(G \) not on \(C \). Suppose \(d(x, C) \geq 2 \). Then either \(C \) is a quadrilateral or \(C + x \) contains a cycle \(C' \) such that \(l(C') < l(C) \).