Preparation of micron-sized, monodispersed, anomalous polymer particles by utilizing the solvent-absorbing/releasing method

M. Okubo
Y. Konishi
M. Takebe
H. Minami

Received: 3 August 1999
Accepted: 1 March 2000

Part CXCIX of the series “Studies on suspension and emulsion”

M. Okubo Y. Konishi
M. Takebe H. Minami
Department of Chemical Science and Engineering, Faculty of Engineering
Kobe University
Kobe 657-8501, Japan
e-mail: okubo@cx.kobe-u.ac.jp

Abstract About 2-μm-sized polystyrene (PS) particles having uneven surfaces were prepared by a post-treatment in which toluene-swollen PS particles were thrown into a methanol bath to release toluene therefrom rapidly. The post-treatment was named the “solvent-absorbing/releasing method”. The PS particle had large dents at the surface. The size of the dents was changed by the conditions of the posttreatment.

Key words Anomalous shape · Micron-sized, monodispersed particle · Solvent

Introduction

Polymer particles produced by emulsion polymerization are normally spherical because they minimize the interfacial free energy between the particle and the aqueous medium; however, in a series of our investigations on the production of sub-micron-sized composite polymer particles by seeded emulsion polymerization, various anomalous polymer particles have been produced [1–9].

On the other hand, recently, many researchers studying polymer colloids have been concentrating their attention on the production of micron-sized, monodispersed polymer particles [10–13] which have been applied in the biomedical field, microelectronics, etc. We have been producing micron-sized, monodispersed polymer particles having functional groups such as chloromethyl [14] and vinyl groups [15, 16] by seeded dispersion copolymerizations of styrene (S) with chloromethyl styrene and divinylbenzene, respectively, in the presence of about 2-μm-sized, monodispersed polystyrene (PS) particles as seeds. However, it was difficult to produce monodispersed particles of more than 5-μm size even by dispersion polymerization and seeded dispersion polymerization. In order to produce monodispersed polymer particles having diameters above 5 μm, seeded polymerization utilizing a new type of swelling method of seed polymer particles with a large amount of monomer which was named “the dynamic swelling method” was suggested [17, 18]. In previous work [19, 20], this technique was developed to produce micron-sized, monodispersed polymer particles having one hollow in the inside, and the formation mechanism of the hollow structure was proposed [21]. Moreover, anomalous polymer particles having “rugby-ball-like” and “red-blood-corpuscle-like” shapes were observed at low conversions of the seeded polymerization for the production of hollow polymer particles [21, 22]. Control of the particle shape should be one of the functionalization of polymer particle [23].

In this study, the formation of micron-sized, monodispersed, anomalous polymer particles by a posttreatment is proposed.
Experimental

Materials

S was purified by distillation under reduced pressure in a nitrogen atmosphere. Reagent grade 2,2′-azobis(isobutyronitrile) (AIBN) was purified by recrystallization. Deionized water was distilled with a Pyrex distillator. Poly(acrylic acid) used as a colloidal stabilizer was produced by solution polymerization of acrylic acid in 1,4-dioxane [14]. The other ingredients were of reagent grade and were used as received.

Preparation of anomalous PS particles by posttreatment

Hydrophobic solvent was emulsified in an ethanol/water (2/3, v/v) medium dissolving sodium dodecyl sulfate by an ultrasonic homogenizer (US-300T, Nihonseiki) at 0 °C for 10 min. The prepared solvent emulsion was mixed with the ethanol aqueous dispersion of PS particles produced by dispersion polymerization of S under the conditions listed in Table 1. The mixture was stirred at room temperature with a magnetic stirrer at 200 rpm for 2.5 h. The mixture (about 10 g) was sprayed into an excess of methanol in a bath (200 ml) under stirring at 500 rpm with a nebulizer with a nozzle diameter of 0.39 mm equipped with an air pump (air pump: pressure, 0.12 kgf/cm²; flow, 32 l/min) to release the solvent from the swollen PS particles rapidly. The PS particles and the swollen particles were observed with a Nikon MICROPHOT-FXA optical microscope, a Hitachi H-7100 TEM transmission electron microscope (TEM) and a Hitachi S-2500 scanning electron microscope (SEM).

Table 1 Production of micron-sized, monodispersed polystyrene (PS) particles by dispersion polymerization. N2; 70 °C; 24 h; stirring rate, 60 rpm

<table>
<thead>
<tr>
<th>Ingredients</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Styrene</td>
<td>30 g</td>
</tr>
<tr>
<td>2,2′-Azobis(isobutyronitrile)</td>
<td>540.5 mg</td>
</tr>
<tr>
<td>Poly(acrylic acid)</td>
<td>3.6 g</td>
</tr>
<tr>
<td>Ethanol</td>
<td>205.5 g</td>
</tr>
<tr>
<td>Water</td>
<td>60 g</td>
</tr>
</tbody>
</table>

Measurement of the solubility of the solvent in the bath

Toluene (1 g) or decalin (3 g) respectively, was, added to a methanol/water or a methanol bath (10 g) in glass cylindrical reactors and these reactors were left at 30 °C for several hours. The amounts of the solvents dissolving in the baths were measured by gas chromatography (Shimadzu, GC-18APFsc).

Measurement of the dissolving rate of toluene in the bath

Toluene (50 mg) dissolving small amount of oil blue dye was added into the bath (50 g) in a glass cylindrical reactor (diameter, 40 mm) without stirring. The time for the toluene droplets to disappear was measured at room temperature.

Turbidity measurement

A nonsolvent (methanol, ethanol or 2-propanol) for PS was slowly dropped into a 0.1 wt% PS toluene solution (8 g). The transmittance of the solution at various contents of the nonsolvent was measured at room temperature with a photoelectric photometer (Tokyo Koden, Co., model 7) at 470 nm.

Results and discussion

An optical micrograph, a TEM photograph and a SEM photograph of PS particles produced by the dispersion polymerization of S in an ethanol/water (7/3, w/w) medium with AIBN initiator at 70 °C for 24 h under the conditions listed in Table 1 according to the optimum conditions in a previous article [14] are shown in Fig. 1. The particles were spherical and homogeneous in the inside, and the size of particles was monodisperse: the number-average diameter and the coefficient of variation determined from the TEM photograph were 1.6 μm and 3.7%, respectively. The weight-average molecular weight of PS, which was measured by gel permeation chromatography with calibration obtained using PS standards with tetrahydrofuran as the eluent, was 2.0 × 10⁶.

An optical micrograph of toluene-swollen PS particles (PS/toluene: 1/10, w/w) is shown in Fig. 2a. The swollen particles were prepared by mixing an ethanol aqueous dispersion of the toluene droplets and the PS particles under the conditions listed in Table 2.