Surface modification of fine colloidal silica with copolymer silane-coupling agents composed of maleic anhydride

K. Yoshinaga
Y. Tani
Y. Tanaka

Received: 27 June 2001
Accepted: 6 September 2001

Abstract The reactivity of copolymer silane composed of maleic anhydride in the modification of fine colloidal silica was studied. The reaction of colloidal silica of 10 and 45-nm diameter with trimethoxysilyl-terminated poly(maleic anhydride-co-styrene) [P(MA-ST)] and poly(MA-co-methyl methacrylate) in tetrahydrofuran resulted in effective surface modification without particle aggregation. From the results that the reaction using the polystyrene silane of low molecular weight led to partial aggregation, it was suggested that the steric interaction between relatively rigid copolymer chains having a maleic anhydride moiety adsorbed on the silica prevented the aggregation in the reaction. The 29Si cross-polarization magic-angle-spinning NMR spectra of P(MA-ST)-modified silica showed that the polymer silane was bound to the silica surface by the direct reaction with silica hydroxyl groups and via the polymerization.

Keywords Colloidal silica · Surface modification · Polymeric silane · Maleic anhydride · 29Si NMR

Introduction

Recently, the fabrication of chemical or physical properties on nanosized particles has been receiving great attention for developing new materials [1–6]. Hybrid materials derived from nanosized inorganic particles and organic compounds are also promising new functional materials exhibiting specific properties, such as quantum effects. In this respect, we have developed the surface modification method of colloidal fine particles using polymeric silane-coupling agents [7, 8]. Especially, the modification with trimethoxysilyl-terminated maleic anhydride-styrene copolymer [P(MA-ST)] successfully led to the preparation of monodisperse and stable composite particles in acidic or alkaline aqueous solution by employing the reaction of the MA moiety with disocyanate, and to the introduction of amino or carboxyl groups on the surface. Further, attachment of the secondary polymer to the P(MA-ST)-modified silica effectively brought about control of the surface polarity [8].

This article describes the specific reactivity of trimethoxysilyl-terminated copolymer coupling agents composed of MA in the modification of colloidal silica particles, of 10 and 45-nm diameter, and surface structure analysis of fine composites on 29Si NMR spectra.

Experimental

Materials

Monodisperse colloidal silicas (CS-10, CS-45 and CS-120), containing SiO$_2$ of 10, 45 and 120-nm diameter suspended in ethanol, were kindly offered by Catalysts & Chemicals, Japan; the suspensions of CS-10, CS-45 and CS-120 contained 30, 30 and 18 wt% SiO$_2$, respectively. Silica gel of 10–20 mesh was purchased from Wako Chemicals Co., Japan. Trimethoxysilyl-terminated polymers of P(MA-ST) [P(MA-ST)-Si(OMe)$_3$] and poly(MA-co-methyl methacrylate) [P(MA-MMA)-Si(OMe)$_3$] with a number-average molecular weight (M_n) of 6,400 (weight-average molecular weight, M_w/-M_n = 1.82) and 4,400 (M_w/-M_n = 2.05), respectively, were synthesized by the method reported previously [9, 10]. The polymers of P(MA-ST)-Si(OMe)$_3$ and P(MA-MMA)-Si(OMe)$_3$
were composed of equimolar MA and ST, and three parts of MA and five parts of MMA, respectively.

Measurements

The 2Si cross-polarization magic-angle-spinning (CP/MAS) NMR spectra were recorded using a 7-mm rotor probe on a Bruker Avance 300. The particle size distribution was measured by a light scattering method using an Ohtsuka DLS7000. The molecular weight of the polymers was determined by gel permeation chromatography on TSK gel 3000H with a tetrahydrofuran eluant, based on calibration with polystyrene (PST) standard. Thermogravimetric analyses were carried out using a Shimadzu TGA-50.

Synthesis of PST-trimethoxysilane

A typical synthesis was carried out as follows. To 6.5 cm3 freshly distilled ST was quickly added 2.5 cm3 butyl lithium in hexane (1.6 M) at −50 °C in an argon atmosphere. The mixture was stirred for 5 min and then carbon dioxide was blown into the mixture until the solution turned clear. The resulting solution was poured into methanol to precipitate the PST after the neutralization with 6N HCl. The precipitation from the tetrahydrofuran solution with methanol and drying under reduced pressure gave 5.5 g carboxylic-terminated PST, of $M_N = 8,600$ and of $M_W/M_N = 1.24$. To a solution of 4.1 g PST in dry chloroform (20 cm3) was added 1.7 cm3 3-aminopropyltrimethoxysilane and 1.0 g N,N'-dicyclohexylcarbodiimide and the mixture was stirred at 0 °C for 2 h and then at room temperature for 24 h. The precipitation from the solution with methanol gave 4.0 g trimethoxysilane-terminated PST [PST-Si(OMe)$_3$]; the conversion of carboxyl-PST to the silane was above 95%.

Reaction of colloidal silica with polymer-trimethoxysilane

A typical reaction of colloidal silica with the polymer silane was as follows. To 20 cm3 acetone solution containing 0.1 g P(MA-ST)-Si(OMe)$_3$ was added 2.9 cm3 colloidal silica suspension and the mixture was gently stirred under refluxing for 5 h in a nitrogen atmosphere. In the case of the modification with PST-Si(OMe)$_3$, the reaction was carried out in tetrahydrofuran solution. After, 1 g granular silica (10–20 mesh) gel was added to the solution to remove unreacted polymer silane by the reaction with hydroxyl group, and then the heterogeneous solution was heated at 65 °C for 1 h without stirring. The suspension containing the composite was separated from the silica gel by decantation. Complete removal of the polymer silane by the reaction with the hydroxyl group on silica gel was confirmed by observation of no signals in the 1H NMR spectrum of the solution.

Determination of grafted polymer

The evaporation of the solution gave a colorless solid. The grafted polymer was determined by the weight loss during a temperature elevation from 100 to 1000 °C, after keeping the solution by evaporation of the suspension at 100 °C for 1 h, at a rate of 5 °C min$^{-1}$ on the thermal analysis.

Results and discussion

Modification with MA-copolymer silane

The surface modifications of inorganic particles with copolymer silane composed of MA are significantly useful and convenient, because the MA group is available to graft the secondary polymer or functional groups. Plots of the amounts of grafted copolymer versus dosed copolymer silane in the modification using CS-45 in units of moles per square nanometer of silica are shown in Fig. 1. It is observed that the amounts of the grafted copolymer increased linearly with increasing dosed copolymer silane, and, therefore, these copolymer silanes efficiently bound to the surface of the silica particles. In both cases, it is especially noteworthy that below the polymer silane concentration of 0.5 × 10$^{-23}$ mol nm$^{-2}$, above 80% of the dosed silane was able to react with the hydroxyl group on the colloidal silica with considerably high efficiency. Each highest value represents the maximum amount of the grafting. As shown in Fig. 1, the maximum grafting corresponds to 5.0 and 3.4 chains nm$^{-2}$ for the modification with P(MA-MMA)-Si(OMe)$_3$ and P(MA-ST)-Si(OMe)$_3$, respectively. It has been reported that the numbers of hydroxyl groups on the surface of silica gel are generally 3–5 groups nm$^{-2}$ [11, 12], so this result shows that a considerably high extent of the surface modification can be achieved in the present modification. Recently, Yamamoto et al. [13] reported that the graft density in the grafting of PMMA on a SiO$_2$ substrate by surface-initiated atom-transfer radical polymerization is changed in the range from 0.07 to 0.7 chains nm$^{-2}$. Thus, the graft density in this work, 3.5 or 5.0 chains nm$^{-2}$, was considerably higher than that obtained by Yamamoto et al. The high graft density is possibly due to attachment of polymerized silane to the fairly reactive hydroxyl group of CS-45 and to effective grafting of polymer chains on the curvature of silica fine spheres (discussed later).

The results of the surface modifications of colloidal silica of CS-10, CS-45 and CS-120 with P(MA-ST)-

![Fig. 1 Plots of grafted polymer versus dosed trimethoxysilyl-terminated poly(maleic anhydride-co-methyl methacrylate) [P(MA-MMA)-Si(OMe)$_3$] (circles) and trimethoxysilyl-terminated MA-styrene copolymer [P(MA-ST)-Si(OMe)$_3$] (squares) in the modification of CS-45](image)