BipA is required for growth of *Escherichia coli* K12 at low temperature

Received: 15 March 2001 / Accepted: 6 July 2001 / Published online: 22 August 2001
© Springer-Verlag 2001

Abstract The *bipA* gene encodes a ribosome-associated GTPase postulated to be involved in regulatory functions in enteropathogenic *Escherichia coli*. Previous studies demonstrated that BipA is tyrosine phosphorylated in EPEC strains, but not in *E. coli* strain K12. Results presented here indicate that BipA function is required at low temperatures in *E. coli* K12, suggesting a regulatory role independent of phosphorylation and of pathogenicity.

Keywords *bipA* · *yihK* · Cold sensitivity · *Escherichia coli* K12

Results and discussion

Isolation of multicycop suppressors of the cold sensitivity of strain D10

To ascertain the cause of the observed cold sensitivity of strain D10, we isolated multicycop suppressors from a genomic library. DNA was prepared from strain MC4100 (Casadaban 1976), partially digested with *Sal*I, and size fractionated by agarose gel electrophoresis. DNA fragments between approximately 1 kb and 4 kb in size were ligated with pBR322 DNA that had been digested with *Bam*HI and dephosphorylated (Sambrook et al. 1989). The resultant library was transformed into D10 by electroporation, and transformants were selected on LB in the presence of ampicillin (125 mg/l) at 20°C. Although prolonged incubation led to high levels of background growth, cold-resistant colonies were easily distinguishable by their early appearance.

The cold-sensitive phenotype of strain D10 is suppressible by *bipA*

Approximately 12,000 transformants were analyzed for cold resistance and six such colonies were identified. These six colonies were purified and restreaked at 20°C to verify the cold-resistant phenotype. Plasmid DNA was purified from each isolate and retransformed into D10 to confirm that the cold resistance was plasmid encoded. All transformants displayed a cold-resistant phenotype, demonstrating that each contained a plasmid which suppressed the cold sensitivity of D10 (for example, pPPL7 in Fig. 2A).

The six plasmids were analyzed by restriction enzyme digestion; the size of the inserts ranged from approximately 2300 bp to 8200 bp and each exhibited a different restriction fragment pattern, demonstrating that each plasmid was an independent isolate. DNA sequence
Fig. 1A–C Strains D10 and AF600 (MG1655 Δ hip A::kan) are cold sensitive. A The indicated strains were streaked on LB agar plates and incubated at 20°C for 4 days. B Strains were grown overnight at 37°C in LB broth, then diluted to a starting A600 of approximately 0.02 (again in LB broth). Growth was allowed to proceed at 20°C in a BioScreen C Microbiology Reader from Labsystems as described previously (Flower 2001). Measurements were taken every 30 min, but for clarity only readings for each 5-h increment are shown. C Bacteria were grown overnight at 37°C, then subcultured to a starting A600 equal to approximately 0.02 in LB broth. Cultures were incubated in the BioScreen at 37°C and readings were taken every 30 min. Symbols: closed squares, MG1655; open squares, AF600; closed triangles, D10 (E. coli Genetic Stock Center); open triangles, D10 (Flower laboratory stock).

Fig. 2A–C Plasmid-borne hip A complements the cold-sensitive defect of D10 (Flower stock) and AF600. Plasmid pPPL7 was obtained in the screen for multicopy suppressors, and contains a 2300-bp fragment encoding hip A. A Strains were grown on LB agar with 125 mg/l ampicillin at 20°C for 4 days. B, C Strains were grown in LB broth with 100 mg/l ampicillin at 20°C in the BioScreen as described in Fig. 1. Again, measurements were taken every 30 min, but only every 5-h increment is shown. Symbols: closed squares (B), MG1655; open squares (B), AF600; closed triangles (C), D10 (E. coli Genetic Stock Center); open triangles (C); D10 (Flower stock). All points connected by solid lines indicate strains that carry control plasmid pBR322, data for strains with pPPL7 are shown with dashed connecting lines.