A variational characterization for $\sigma_{n/2}$

Received: 31 March 2003 / Accepted: 10 July 2003
Published online: 25 February 2004 – © Springer-Verlag 2004

Abstract. We present here a conformal variational characterization in dimension $n = 2k$ of the equation $\sigma_k(A_g) = \text{constant}$, where A is the Schouten tensor. Using the fully nonlinear parabolic flow introduced in [3], we apply this characterization to the global minimization of the functional.

1 Introduction

Let (M^n, g) be a compact, connected, locally conformally flat Riemannian manifold of even dimension n, and let the Ricci tensor and scalar curvature be denoted by Ric and R, respectively. We recall the definition of the Schouten tensor

$$A_g = \frac{1}{n-2} \left(\text{Ric} - \frac{1}{2(n-1)} R g \right),$$

and we consider the equation

$$\sigma_k(A_{\tilde{g}}) = \text{constant},$$

where $\tilde{g} = e^{2u} g$ is a conformal metric. A variational characterization for this equation was given in [4] for $k \neq n/2$, and this problem was further studied by P. Guan and G. Wang in [3], where they proposed the following conformal flow:

$$\frac{d}{dt} g = - (\log \sigma_k(A_g) - \log r_k) \cdot g,$$

$$g(0) = g_0,$$

where

$$\log r_k = \frac{1}{Vol(g)} \int_M \log \sigma_k(g) \, dvol(g).$$

S. Brendle: Department of Mathematics, Princeton University, Princeton, NJ 08544, USA
(e-mail: brendle@math.princeton.edu)
J.A. Viaclovsky: Department of Mathematics, MIT, Cambridge, MA 02139, UK
(e-mail: jeffv@math.mit.edu)

Research supported in part by an NSF Postdoctoral Fellowship.
This is fully nonlinear parabolic equation as long as the Schouten tensor of \(g \) belongs to the set

\[
\Gamma_k^+ = \text{component of } \{ \sigma_k > 0 \} \text{ containing the positive cone.}
\]

P. Guan and G. Wang established global existence of the flow, and for \(k \neq n/2 \) they proved convergence in \(C^\infty \) to a solution of \(\sigma_k = \text{constant} \). In this note, we extend their result to the remaining case \(k = n/2 \).

Theorem. For every locally conformally flat initial metric \(g_0 \), with \(A_{g_0} \in \Gamma_k^+ \), the evolution equation (2) has a global solution which converges in \(C^\infty \) to a limiting metric \(g \) satisfying \(\sigma_{n/2}(A_g) = \text{constant} \).

The missing element in Guan and Wang’s argument is the conformal primitive for \(\sigma_{n/2}(A_g) \). The purpose of this paper is to present a derivation of such a functional. A different method was used by S.-Y. A. Chang and P. Yang in [1].

2 Variational characterization

In the first step, we prove existence of a conformal primitive by verifying the integrability conditions. Let \(\mathcal{M} \) be an equivalence class of conformally equivalent metrics on \(M \). The tangent space of \(\mathcal{M} \) at \(g \) can be identified with the space of real-valued functions on \(M \). We define a 1-form \(\alpha \) on \(\mathcal{M} \) by

\[
\alpha_g(v) = \int_M \sigma_{n/2}(A_g) v \, dvol_g,
\]

where \(A_g \) denotes the Schouten tensor of the metric \(g \). We claim that \(\alpha \) is closed. To check this, we consider a two-parameter family of functions \(u(s,t) \) satisfying \(u(0,0) = 0 \). We define a family of conformal metrics \(\tilde{g}(s,t) \) by

\[
\tilde{g}(s,t) = e^{2u(s,t)} g.
\]

The exterior derivative of \(\alpha \) is given by

\[
d\alpha \left(\frac{\partial}{\partial s}, \frac{\partial}{\partial t} \right) = \frac{d}{ds} \alpha \left(\frac{\partial}{\partial t} \right) - \frac{d}{dt} \alpha \left(\frac{\partial}{\partial s} \right).
\]

Using the transformation formulae

\[
A_{\tilde{g}} = -\nabla^2 u + du \otimes du - \frac{|\nabla u|^2}{2} g + A_g,
\]

and

\[
\tilde{\nabla}^2 h = \nabla^2 h - du \otimes dh - dh \otimes du + \langle du, dh \rangle g,
\]

(3) and

(4)