On the long-time behavior of some mathematical models for nematic liquid crystals

Hana Petzeltová · Elisabetta Rocca · Giulio Schimperna

Received: 27 July 2011 / Accepted: 15 December 2011 / Published online: 17 January 2012
© Springer-Verlag 2012

Abstract A model describing the evolution of a liquid crystal substance in the nematic phase is investigated in terms of two basic state variables: the velocity field u and the director field d, representing the preferred orientation of molecules in a neighborhood of any point in a reference domain. After recalling a known existence result, we investigate the long-time behavior of weak solutions. In particular, we show that any solution trajectory admits a non-empty ω-limit set containing only stationary solutions. Moreover, we give a number of sufficient conditions in order that the ω-limit set contains a single point. Our approach improves and generalizes existing results on the same problem.

Mathematics Subject Classification (2000) 35B40 · 35K45 · 76A15
1 Introduction

In this paper we analyze the long-time behavior of weak solutions to the system

\[u_t + \text{div}(u \otimes u) - \nu \Delta u = \text{div}(-pI - L(\nabla d \otimes \nabla d) - \delta(L \Delta d - f(d)) \otimes d), \]

\[\text{div} u = 0, \]

\[d_t + u \cdot \nabla d - \delta d \cdot \nabla u - L \Delta d + f(d) = 0, \]

describing the evolutionary behavior of nematic liquid crystal flows (we refer to the monographs [5,6] for a detailed presentation of the physical foundations of continuum theories of liquid crystals). Actually, system (1–3) can be seen as a simplification of the original Ericksen–Leslie model [7,13], that still keeps a good level of compliance with experimental results. The model couples the Navier-Stokes Eq. 1 for the macroscopic velocity \(u \) (\(p \) denoting as usual the pressure), with the incompressibility condition (2) and with the Eq. 3 ruling the behavior of the local orientation vector \(d \) of the liquid crystal. Here, the function \(f \) represents the gradient w.r.t. \(d \) of the configuration energy \(F \) of the crystal. We choose \(F \) to be a double well potential having minima for \(|d| = 1 \) and growing at infinity at most as a fourth order polynomial. This provides a standard relaxation of the physical constraint \(|d| = 1 \), which is very difficult to treat mathematically.

In this paper, the system is complemented with the homogeneous Dirichlet boundary condition for \(u \), the no-flux condition for \(d \), and with initial conditions. It is settled in a smooth bounded domain \(\Omega \subset \mathbb{R}^d \) for \(d = 2 \) or \(d = 3 \). No restriction is assumed on the viscosity coefficient \(\nu \).

Regarding the parameter \(\delta \), we will take \(\delta \geq 0 \), with the case \(\delta > 0 \) denoting the presence of a stretching effect on the molecules of the crystal. Some of our results, however, hold only for \(\delta = 0 \). Actually, the situation \(\delta > 0 \) is more difficult to be treated mathematically since the term \(\delta d \cdot \nabla u \) prevents from using maximum principle arguments in (3). For this reason, even if the initial datum \(d_0 \) satisfies the (relaxed) physical constraint \(|d_0| \leq 1 \) almost everywhere, the same may not be true for \(d(t) \), for positive times, if \(\delta > 0 \).

A mathematical analysis of system (1–3) has been first addressed in the papers [14] and [15] (in this second work, an even more general model is taken into account). There, the authors consider the case \(\delta = 0 \) and prove existence of a unique classical solution for \(d = 2 \), and also in dimension \(d = 3 \) under the additional assumption that the viscosity \(\nu \) is sufficiently large. These results have been extended to the case \(\delta > 0 \) in the paper [19]. Finally, the restriction on the viscosity has been recently dropped in [2], where weak solutions are considered and a global existence result for the 3D system (1–3) is proved in that regularity frame. Of course, uniqueness is not known to hold in that regularity setting. A similar result is essentially contained also in the recent paper [3], where analogous estimates are derived but no formal statement of an existence result is provided.

The Dirichlet boundary condition for \(u \) and either a nonhomogeneous Dirichlet or the no-flux boundary condition for \(d \) are treated there. Moreover, let us quote the recent paper [9], where these results have been extended to a more general system (1–3), where also temperature effects are taken into account. We note, however, that the results of [9] require different boundary conditions for \(u \) (namely, the so-called complete slip conditions).

The long-time behavior of system (1–3) has been analyzed in the recent work [20], still considering the case \(d = 2 \) or the case \(d = 3 \) with the large viscosity \(\nu \), and periodic boundary conditions. More precisely, in [20] the authors show existence of a nonempty \(\omega \)-limit set for any strong bounded solution emanating from smooth initial data. Moreover, by using the