Lower semicontinuity and relaxation of signed functionals with linear growth in the context of \mathcal{A}-quasiconvexity

Margarida Baía · Milena Chermisi · José Matias · Pedro M. Santos

Received: 3 April 2011 / Accepted: 20 April 2012 / Published online: 12 May 2012 © Springer-Verlag 2012

Abstract A lower semicontinuity and relaxation result with respect to weak-\ast convergence of measures is derived for functionals of the form

$$\mu \in \mathcal{M}(\Omega; \mathbb{R}^d) \rightarrow \int_{\Omega} f(\mu^a(x)) \, dx + \int_{\Omega} f^\infty \left(\frac{d\mu^s}{d|\mu^s|} (x) \right) \, d|\mu^s|(x),$$

where admissible sequences $\{\mu_n\}$ are such that $\{\mathcal{A}\mu_n\}$ converges to zero strongly in $W_{loc}^{-1,q}(\Omega)$ and \mathcal{A} is a partial differential operator with constant rank. The integrand f has linear growth and L^∞-bounds from below are not assumed.

Mathematics Subject Classification 28A33 · 49J40 · 49J45 · 49K20

1 Introduction

In this work we start by deriving a lower semicontinuity result with respect to weak-\ast convergence of \mathcal{A}-free measures for the functional

$$\mathcal{F}(\mu) = \int_{\Omega} f(\mu^a) \, dx + \int_{\Omega} f^\infty \left(\frac{d\mu^s}{d|\mu^s|} \right) \, d|\mu^s|, \quad \mu \in \mathcal{M}(\Omega; \mathbb{R}^d),$$

(1.1)

where Ω is an open bounded subset of \mathbb{R}^N, $\mathcal{M}(\Omega; \mathbb{R}^d)$ stands for the set of finite \mathbb{R}^d-valued Radon measures over Ω, $\mu = \mu^a L^N + \mu^s$ is the Radon–Nikodým decomposition of μ with

Communicated by L. Ambrosio.

M. Baía (✉) · J. Matias · P. M. Santos
Departamento de Matemática, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
e-mail: mbaia@math.ist.utl.pt

M. Chermisi
Department of Mathematical Sciences, New Jersey Institute of Technology, 323 Dr. M.L. King, Jr. Blvd., Newark, NJ 07102, USA
respect to the Lebesgue measure \mathcal{L}^N. Here and in what follows, the integrand $f : \mathbb{R}^d \to \mathbb{R}$ is assumed to be \mathcal{A}-quasiconvex (see Sect. 2 for other notations and definitions), where \mathcal{A} is a linear first order partial differential operator of the form

$$\mathcal{A} := \sum_{i=1}^{N} A^{(i)} \frac{\partial}{\partial x_i}, \quad A^{(i)} \in M^{M \times d}(\mathbb{R}), \quad M \in \mathbb{N},$$

that we assume throughout Murat’s condition of constant rank (see [15] and [9]) i.e., there exists $c \in \mathbb{N}$ such that

$$\text{rank} \left(\sum_{i=1}^{N} A^{(i)} \xi^i \right) = c \quad \text{for all } \xi = (\xi_1, ..., \xi_N) \in S^{N-1}.$$

In addition we assume f to be Lipschitz continuous and we remark that this condition implies f to satisfy a linear growth condition at infinity of the type

$$|f(v)| \leq C(1 + |v|) \quad (1.3)$$

for all $v \in \mathbb{R}^d$ and for some $C > 0$. As usual we denote by f^∞ the recession function of f (see Remark 3.2 below) which for our problem is defined as

$$f^\infty(\xi) := \limsup_{t \to \infty} \frac{f(t \xi)}{t}. \quad (1.4)$$

As already proved by Fonseca and Müller [9] \mathcal{A}-quasiconvexity with respect to the last variable turns out to be a necessary and sufficient condition for the lower semicontinuity of

$$(u, v) \to \int_{\Omega} f(x, u(x), v(x)) \, dx$$

for positive normal integrands f with linear growth among sequences (u_n, v_n) such that $u_n \to u$ in measure, $v_n \rightharpoonup v$ in L^1 and $\mathcal{A} v_n = 0$. In Fonseca, Leoni and Müller [10] this result was partially extended by considering weak-\ast convergence in the sense of measures (in the variable v). Precisely the authors considered a functional of the form

$$v \to \int_{\Omega} f(x, v(x)) \, dx$$

and, in particular, it was proved that

$$\int_{\Omega} f(x, \mu^G(x)) \, dx \leq \lim_{n \to \infty} \int_{\Omega} f(x, v_n(x)) \, dx \quad (1.5)$$

for any sequence $v_n \subset L^1(\Omega; \mathbb{R}^d) \cap \ker \mathcal{A}$ such that $v_n \mathcal{L}^N \rightharpoonup^* \mu$ in the sense of measures, under the assumptions that f is a Borel measurable positive function with linear growth, Lipschitz continuous and \mathcal{A}-quasiconvex in the last variable, and satisfying an appropriate continuity condition on the first variable (see Theorem 1.4 in [10]). Note that in (1.5) the term μ^G has not been considered.

Here we extend this last result for a larger class of integrands where L^∞-bounds from below are not assumed and to functionals taking into account the singular part of the limit measure μ. Namely, we prove the following theorem.

 Springer