Risk factors for development of hepatocellular carcinoma in patients with chronic hepatitis C after sustained response to interferon

Masafumi Ikeda¹, Shigetoshi Fujiyama¹², Motohiko Tanaka¹², Michio Sata³, Tatsuya Ide³, Hiroshi Yatsuhashi⁴, and Hiroshi Watanabe⁵

¹Department of Gastroenterology and Hepatology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
²Department of Gastroenterology and Hepatology, NTT West Kyushu General Hospital, Kumamoto, Japan
³Second Department of Internal Medicine, Kurume University School of Medicine, Fukuoka, Japan
⁴Institute for Clinical Research, National Nagasaki Medical Center, Nagasaki, Japan
⁵Third Department of Internal Medicine, Fukuoka University School of Medicine, Fukuoka, Japan

Key words: hepatitis C virus, hepatocellular carcinoma, interferon, sustained response

Introduction

Hepatitis C virus (HCV) infection is one of the most common causes of chronic hepatitis, and it is also a major risk factor for hepatocellular carcinoma (HCC). Chronic hepatitis C is often asymptomatic and mild, but may slowly progress to liver cirrhosis and eventually to HCC. Therefore, it has been assumed that eradication of HCV would provide the most effective means of preventing HCC.

Currently, interferon (IFN) represents the mainstay of treatment for chronic hepatitis C. IFN therapy can lead to a decrease in serum transaminase activity, and to the disappearance of serum HCV RNA in patients with chronic hepatitis C. These patients appear to benefit by the prevention of progression to cirrhosis and eventually to HCC. However, HCC can still occur in patients who are treated successfully with IFN, i.e., those showing a sustained response to the therapy. The incidence and clinical features of HCC, and the risk factors for carcinogenesis, have not yet been investigated, although they have been documented in individuals and in small numbers of patients. We investigated a large cohort of patients showing a sustained response to IFN therapy given for chronic hepatitis C. Our aims were to assess the incidence of HCC in these patients and to discover the clinical variables that may be associated with the development of HCC. Our study also focused on the clinical features of HCC. We designed a multicenter retrospective cohort study, because a single-institution study would have provided inadequate numbers of sustained responders who developed HCC.

Editorial on page 220
Patients and methods

Patients

This study was conducted at 16 major hospitals belonging to the Japanese Society of Gastroenterology, Kyushu Division. A large cohort of sustained responders to IFN therapy given for chronic hepatitis C, in whom HCC had, or had not, been detected, was assembled consecutively by means of data collection instruments. All sustained responders included in the study were positive for HCV RNA before IFN therapy, and were followed up for more than 1 year after termination of IFN therapy, during the period July 1988 to August 2001. Sustained response was defined as the presence of HCV RNA negativity (determined by using qualitative HCV RNA assay) more than 6 months after the termination of IFN therapy. Diagnosis of HCC was based either on histological examination or on typical computed tomographic and/or angiographic findings at each institution. Patients were excluded if HCC was detected within 1 year after the termination of IFN therapy, because in such cases it was highly likely that the cancer had been present at the end of the IFN therapy. In Japan, at the time of the study, the standard schedule was 6–10 MU IFN-α every day for the first 2–4 weeks and then the same dose given three times a week for the following 20–22 weeks, or 6 MU IFN-β every day for 6–8 weeks.

During the study period at the 16 hospitals, a total of 3504 patients with chronic hepatitis C had received IFN therapy and had been followed up for more than 1 year thereafter, and a sustained response was obtained in 1091 (31.1%) of them. Among the sustained responders, 30 patients (2.7%) developed HCC. By means of the data collection instrument, we requested individual clinical data before IFN therapy for all sustained responders, as well as clinical data at the time of diagnosis of HCC for patients who had developed HCC. The clinical data for all 1091 sustained responders identified were obtained from the 16 hospitals (8 university hospitals and 8 regional hospitals) listed in the appendix. Of these patients, 35 were excluded from the analysis because of the development of HCC within 1 year after IFN therapy (1 patient) or insufficient clinical records before commencement of IFN therapy (34 patients). The final study population comprised a total of 1056 patients showing sustained response to IFN therapy given for chronic hepatitis C, 29 of whom had developed HCC.

Methods

To identify risk factors for the development of HCC in sustained responders to IFN therapy, we used univariate analysis and multivariate analysis to investigate 23 variables before IFN therapy for their relationship to the development of HCC. These variables were chosen by considering possible factors involved in the development of HCC, as indicated by previous investigations, or suggested from our own clinical experience. Each variable, which was classified as host-related or treatment-related, was divided into one of two subgroups on the basis of clinically meaningful values. HCV RNA load was determined quantitatively by competitive reverse-transcription polymerase chain reaction (RT-PCR), branched-DNA probe assay, or Amplicor-HCV monitor assay. When the serum HCV RNA level was more than 10^6 equivalents/ml by branched DNA assay, more than 10^6 copies/ml by competitive RT-PCR, or more than 10^5 copies/ml by Amplicor-HCV monitor assay, it was designated as a high viral load; an HCV RNA level of 10^6 copies/ml by the Amplicor-HCV monitor assay has already been demonstrated to correspond to approximately 10^6 equivalents/ml by the branched DNA probe assay or 10^6 copies/ml by competitive RT-PCR. HCV subtype was classified by either the method of Okamoto et al. or Tanaka et al.’s method. Genotypes 1a and 1b corresponded to serological group 1, and genotypes 2a and 2b corresponded to serological group 2, according to the Simmonds et al. classification. The data from liver biopsies that were done within 6 months before IFN therapy were included in this study. Assessments of the staging of liver fibrosis and the grade of inflammatory activity were based on the classification of Desmet and colleagues, in which staging is defined as follows: F0 (no fibrosis), F1 (fibrous portal expansion), F2 (bridging fibrosis), F3 (bridging fibrosis with architectural distortion), and F4 (cirrhosis), and grading is defined as follows: A0 (no activity), A1 (mild activity), A2 (moderate activity), and A3 (severe activity).

To elucidate the clinical features of HCC that developed in sustained responders, 17 variables at the time of diagnosis of HCC were investigated. Number of tumors, maximum tumor size, portal vein invasion, hepatic vein invasion, and bile duct invasion were examined by ultrasonography, computed tomography, and/or angiography. The period to the development of HCC was measured from the day of termination of IFN therapy to the day when HCC was first diagnosed by imaging modalities, such as ultrasonography or computed tomography. The follow-up period for the detection of HCC after termination of IFN therapy was defined as the interval during which checks for HCC were done using tumor markers and/or imaging modalities.

Statistical analysis

Follow up ended with the last recorded visit before August 31, 2001. Incidences were calculated in person-