Inhibitory effect of branched-chain amino acid granules on progression of compensated liver cirrhosis due to hepatitis C virus

Masahiro Kobayashi, Kenji Ikeda, Yasuji Arase, Yoshiyuki Suzuki, Fumitaka Suzuki, Norio Akuta, Tetsuya Hosaka, Naoya Murashima, Satoshi Saitoh, Takashi Someya, Akihito Tsubota, and Hiromitsu Kumada

Department of Gastroenterology, Toranomon Hospital, 2-2-2 Toranomon, Minato-ku, Tokyo 105-8470, Japan
1 Present address: Department of Gastroenterology, Mishuku Hospital, Tokyo, Japan
2 Present address: Institute of Clinical Medicine and Research, Jikei University School of Medicine, Kashiwa, Chiba, Japan

Background. A phase II randomized controlled trial was conducted in patients with compensated liver cirrhosis to investigate the inhibitory effect of branched-chain amino acid (BCAA) granules for oral use (TK-98) on disease progression. Methods. Patients who had compensated liver cirrhosis due to hepatitis C virus with baseline serum albumin levels between 3.6 and 4.5 g/dl were assigned to the TK-98 group, which was treated with BCAA granules (TK-98) for 168 weeks, or to a control group (no treatment). Results. No symptoms indicating decompensated cirrhosis, including ascites, edema, and hepatic encephalopathy were reported in either the TK-98 or control group during the study observation period. Hepatocellular carcinoma (HCC) was noted in eight of the 39 patients studied, and of these three received TK-98 (15.8%) and five were untreated (25.0%). A time-to-event analysis for the effect of BCAA therapy on development of HCC revealed no statistically significant differences between the two groups. However, an additional analysis of data from a subgroup with a baseline serum albumin level of <4.0 g/dl showed that the incidence of HCC was likely to be lower in BCAA-treated patients. Conclusions. BCAA may inhibit hepatic carcinogenesis in patients with compensated cirrhosis with a serum albumin level of <4.0 g/dl.

Key words: BCAA, HCV, compensated liver cirrhosis, hepatocellular carcinoma

Introduction

Liver cirrhosis is classified into two types according to the progression phase of the disease: compensated cirrhosis and decompensated cirrhosis. For improved prognosis and quality of life of patients with liver cirrhosis, it is important to delay progression of the disease from the asymptomatic compensated phase to the decompensated phase, which is accompanied by symptoms such as ascites, edema, and hepatic encephalopathy. The use of branched-chain amino acid (BCAA) granules has been shown to improve hypoalbuminemia in decompensated patients with cirrhosis and hypoalbuminemia despite adequate dietary intake. In addition, several studies have reported that BCAA granules improve the above symptoms of decompensated cirrhosis as well as delay development of serious complications that affect the prognosis for survival. Therefore, the drug has now been extensively used for the purpose of improving serum albumin levels and ameliorating the disease state in patients with cirrhosis.

Serum albumin levels have been reported to serve as an important indicator of the severity of liver cirrhosis, and the maintenance or improvement of these levels is vital for improving the prognosis of liver cirrhosis. We conducted a phase II randomized controlled trial to investigate whether supplementation with BCAA granules increased lowered serum albumin levels and delayed progression of the disease in patients with compensated cirrhosis. Furthermore, we also explored the inhibitory effect of BCAA therapy on development of hepatocellular carcinoma (HCC), based on results of a study showing that the development of HCC has a substantial impact on prognosis of patients with cirrhosis and that the lower the serum albumin level, the greater the risk of HCC.

Materials and methods

Study design

This study was conducted in accordance with Japanese Good Clinical Practice, after review and approval by the
Institutional Review Board of Toranomon Hospital. Subjects were fully informed of the nature of the study, and informed consent to participation in the study was obtained in writing from each subject. Patients enrolled were randomized to receive either BCAA granules (TK-98) or no treatment (control).

The inclusion criteria were as follows: (1) presence of compensated cirrhosis due to hepatitis C virus; (2) no prior or concurrent ascites, edema, or hepatic encephalopathy; (3) serum albumin level between 3.6 and 4.5 g/dl within 2 months prior to the study; (4) male sex and age between 50 and 70 years inclusive. Excluded from the study were patients who had or were considered to have HCC or cancer other than HCC, those with concurrent alcoholic cirrhosis and alcohol dependence, and those receiving nutritional supplements for the management of hepatic failure.

As the present study was intended to evaluate the effect of BCAA, study subjects were those with hepatitis C virus (HCV)-related cirrhosis. Such patients account for more than 60% of Japanese patients with liver cirrhosis. The study had as an additional objective the exploration of the inhibitory effect of BCAA on HCC; therefore, the inclusion criteria included male sex and age between 50 and 70 years, because men in that age range are generally considered to have a propensity to develop HCC.

The following drugs were prohibited during the study: high-BCAA agents for treatment of hepatic disorders, because these may alter plasma albumin and malotilate levels. There were no other restrictions on the concomitant use of drugs.

The primary end point was time to onset of ascites, edema, or hepatic encephalopathy, which are considered to be an indication of disease progression to decompensated cirrhosis. Transition to the decompensated phase of cirrhosis was defined to the time point at which one of the following manifestations was noted for the first time: (a) ascites found on palpation, (b) slight edema in the lower extremities, and (c) grade I or higher hepatic encephalopathy. The secondary variables were serum albumin level, blood Fischer’s ratio (BCAA/aromatic amino acids, molar ratio), development of jaundice, performance status (PS), subjective and/or objective symptoms; and laboratory parameters. In addition, each study subject was assessed for development of HCC with diagnostic imaging at intervals of 24 weeks. When any abnormal changes were noted in serum α-fetoprotein or protein induced by vitamin K absence or antagonist II levels, examination for HCC was additionally undertaken as appropriate.

The TK-98 group and control group each consisted of 20 subjects. Patients were dropped from the study if any symptoms of ascites, edema, hepatic encephalopathy, or jaundice appeared, indicating the decompensated phase of cirrhosis, or if HCC was found to have developed during the study period.

Study drug

BCAA granules (TK-98) containing 952 mg of L-isoleucine, 1904 mg of L-leucine and 1144 mg of L-valine per packet were orally administered to subjects at doses of one packet three times daily after meals. The control patients received no treatment.

Statistical analysis

Statistical analysis was performed with SAS Release 9.1.3 Service Pack 2. A time-to-event analysis was carried out to determine the transition to the decompensated phase of cirrhosis using the time point of event onset at which any of symptoms such as ascites, edema, or hepatic encephalopathy were noted for the first time. Survival functions were estimated by the Kaplan-Meier method, and the survival functions were compared between the two groups by using the log-rank test. Cox’s proportional hazards models were used to examine the effect of the treatment and prognostic variables. Serum albumin levels and Fischer’s ratio data were analyzed by using a mixed-effects model in terms of respective time-course patterns.