Clinical Evaluation of Esophageal Doppler Cardiac Output Measurement during General Anesthesia

Mitsuo UEDA, Sho YOKOTA, Fusazo NAKATA, Shigeo KASENO, Norihiko SAKURAYA and Osamu KEMMOTSU

We evaluate the accuracy of cardiac output measurement with esophageal Doppler ultrasonography (ECO). A total of 71 simultaneous measurements of esophageal Doppler and thermodilution cardiac output were compared in 16 patients undergoing general anesthesia in the supine position. ECO was determined easily with minimal experience, and significantly correlated with thermodilution cardiac output (TDCO) measurement \((P < 0.001)\). The regression equation obtained was \(Y = 0.983X + 0.019\), and the correlation coefficient was 0.935. Furthermore, ECO was more reproducible than TDCO. However, ECO is not able to assess CO accurately in either lateral or prone position and after cardiopulmonary bypass in open heart surgery. Our results suggest that the esophageal Doppler technique allows a noninvasive and continuous cardiac output monitoring in patients during general anesthesia, and that it is more useful in patients for whom invasive monitoring is considered inappropriate. However, further improvement in this technique will be necessary for its routine use in clinical anesthesia. (Key words: cardiac output, esophageal Doppler ultrasonography, thermodilution)


The ability to determine cardiac output (CO) and related derived hemodynamic variables improves patient’s care during anesthesia. The currently available method to obtain CO during anesthesia is thermodilution flow measurement which requires placement of a pulmonary artery (PA) catheter in the central veins. As it is invasive and associated with thromboembolic, infectious, and traumatic complications\(^1\)\(^-\)\(^3\), an alternative method of measuring CO have been required.

Doppler ultrasonography is a noninvasive alternative that has been shown to correlate well with thermodilution cardiac output (TDCO) measurement\(^4\)-\(^7\). Early Doppler CO measurement required repeated positioning and holding probe, and it was troublesome during anesthesia. However, a Doppler ultrasonic probe was incorporated into a standard esophageal stethoscope, and this enables us to monitor Doppler signals from the descending aortic blood flow. In this study, we compared CO measurement made by esophageal Doppler ultrasonography with that made by standard thermodilution method during general anesthesia.

Methods

The patients were 16 (7 males and 9 females) adults scheduled for elective surgery at the central operating room of Hokkaido University Hospital. The mean age was 48.8
Fig. 1. Esophageal Doppler cardiac output (ECO) vs thermodilution cardiac output (TDCO) (n = 71). The correlation is significant (P < 0.001).

(range 25–63) years. After the routine pre-operative assessment, all patients were found to require both an intra-arterial catheter and a Swan-Ganz pulmonary artery catheter during anesthesia and surgery. All patients whose surgical position was not supine were excluded. Informed consent was obtained from each patient at the time of pre-anesthesia visit.

After induction of anesthesia, placement of a PA catheter and insertion of an esophageal Doppler probe were made together with direct arterial blood pressure and ECG monitoring.

Ultrasonography Technique
The device utilized in this study was ACCUCOM®, (Datascope, Inc USA). Three steps are required to initiate continuous monitoring of CO. The first is a calculation of cross-sectional area of ascending aortic diameter (CSA). The diameter is determined from a nomogram contained in the monitor, based on age, sex, height, and weight. The CSA is automatically calculated from the aortic diameter. The second is insertion of the esophageal Doppler probe and adjustment for optimal Doppler signal. This provides descending aortic blood velocity (DAV). The final step is one time measurement of ascending aortic blood velocity (ABV) via Doppler ultrasound from the suprasternal notch and the ACCUCOM® computes CO. After the suprasternal CO measurement is done, the ACCUCOM® automatically computes the calibration factor K (K = CO/DAV). Then ACCUCOM® automatically and continuously computes CO from K factor and continuously measured DAV: CO = K*DAV.

Thermodilution Technique
TDCO was measured in patients with 7.5-F PA catheters (American Edwards) in place. Thermal indicator was a 5-ml of iced 5% dextrose solution. The injection was made at end-expiration of the patient’s respiratory cycle. American Edwards SAT-1® CO computer was used in this series of study.

When TDCO was compared with simultaneous esophageal Doppler cardiac output (ECO), measurements were repeated at least two times as rapidly as possible. Isolated single measurements of TDCO or ECO were not included for analysis and less than two measurements of TDCO or ECO were not included for analysis of coefficient of variation (CV) for each epoch.

Statistics
All values were expressed as the mean ± the standard deviation of the mean. Average of thermodilution and esophageal Doppler cardiac output values within each epoch are used as the data points for a simple linear regression analysis and CV. The Student’s t test and the paired t test were used for the statistical analysis. A probability value of P < 0.05 was considered statistically significant.

Results
A total of 71 paired measurement of average CO by esophageal Doppler and by thermodilution were obtained in 16 patients. The mean value of ECO was 4.94 ± 2.1 (range from 1.7–10.0) l/min, whereas that of TDCO was 5.0 ± 1.9 (range from 1.8–9.8) l/min. As shown in figure 1, ECO was significantly