Equations of exposure time and X-ray mask absorber thickness
in the LIGA process

K. H. Gil, S. S. Lee, Y. Youm

Abstract The LIGA X-ray exposure step was modeled into
three inequalities from exposure requirements. From these
inequalities, equations for the minimum and maximum
exposure times required for a good quality microstructure
were obtained. An equation for the thickness of an X-ray
mask absorber was also obtained from the exposure re-
quirement of threshold dose deposition. A power function
of photon energy, approximating the attenuation length of
the representative LIGA resist, PMMA, and the mean pho-
ton energy of the X-rays incident upon an X-ray mask
absorber were applied to the above mentioned equations.
Consequently, the trends of the minimum and maximum
exposure times with respect to mean photon energy of
X-rays and thickness of PMMA were examined and an
equation for the maximum exposable thickness of PMMA
was obtained. The trends of the necessary thickness of a
gold X-ray mask absorber with respect to photon energy of
the X-rays and PMMA thickness ratio were also examined.
The simplicity of the derived equations has clarified the
X-ray exposure phenomenon and the interplay of exposure
times, the attenuation coefficient and the thickness of an
X-ray mask absorber, the attenuation coefficient and the
thickness of a resist, and synchrotron radiation power
density.

1 Introduction
The LIGA process was first developed at the Karlsruhe
Nuclear Research Center in Germany in the early 1980s
[Becker et al. (1986)]. Since then, it has been applied
successfully to various fields such as micromechanics,
micro-optics, and microfluidics. Its application areas have
been expanded to movable microstructures for sensors
and actuators, using sacrificial layers [Bley et al. (1991)
and Guckel et al. (1994)].

The LIGA is a German acronym for X-ray lithography
(Lithographie), electroplating (Galvaniformung), and in-
jection molding (Abformung), all of which are primary
steps of the LIGA process. The X-ray exposure and de-
velopment steps are governed by the X-ray dose deposited
in resist. Malek et al. (1994) performed X-ray exposures,
matching the ratio of the X-ray dose deposited in the
upper part of PMMA to that in the bottom part of the
PMMA to about 6. The traditional method to satisfy the
exposure requirements is to tune the contrast ratio, the
ratio of the maximum X-ray dose deposited in the upper
part of resist to that under an X-ray mask absorber, to 200
[Malek et al. (1996)].

In this work, the basic principles for the X-ray exposure
step are derived directly from exposure requirements
and applied to PMMA and a gold X-ray mask absorber.
Exposure times, the maximum exposable thickness of
PMMA, and the necessary thickness of a gold X-ray mask
absorber are presented.

2 X-ray exposure principles
The bond breakage of resist depends on the X-ray dose
deposited in the resist. Photons absorbed in resist atoms
generate photoelectrons, Auger electrons, and fluorescent
radiation. These electrons and radiation are deposited in
the nearby resist atoms through secondary Thomson and
Compton scatterings. Thus, the X-ray power transfer
through these events is mostly confined to the local range,
which is laterally less than 1 μm [Feldman and Sun (1992)].
The fluorescent radiation generated in the substrate under
the resist by X-rays is deposited in the bottom part of the
resist. But the range affected significantly by the fluores-
cent radiation is also confined laterally to no more than
1 μm [Feiertag et al. (1997)]. In this work, the X-ray energy
atenuated at a point within a resist is assumed to be de-
posited only at that point of the resist and the secondary
exposing effects are neglected.

The power density \(P(t) \) of monochromatic X-rays at
depth \(t \) in a medium is represented as

\[
P(t) = P_0 e^{-\mu t} \tag{1}
\]

where \(P_0 \) and \(\mu \) are the power density at the top surface of
the medium and the attenuation coefficient of the medium,
respectively. Figure 1 depicts the power density of
monochromatic X-rays along the X-ray path when ex-
posed, according to (1). In Fig. 1, subscripts ABS, BLK, and
PR designate an X-ray mask absorber, an X-ray mask

Received: 22 November 1999/Accepted: 27 January 2000

K. H. Gil (✉)
Pohang Accelerator Laboratory

S. S. Lee, Y. Youm
Department of Mechanical Engineering
Pohang University of Science and Technology
San 31 Hyoja-dong, Nam-gu Pohang, Kyungbuk 790-784, Korea

This work is supported by grant (1999-2-304-008-4) from the
interdisciplinary research program of the KOSEF.

This paper was not presented at the Third International
Workshop on High Aspect Ratio Microstructure Technology
blank, and a resist, respectively. The path I represents the path of the X-ray passing directly into the resist without going through the X-ray mask absorber. Path II represents the path of the X-ray passing through the resist after transmitting the X-ray mask absorber. P_s are power densities of the synchrotron radiation at each point.

The following three exposure requirements must be met by an effective X-ray exposure [Bley et al. (1991) and Malek et al. (1994, 1996)].

1. The X-ray dose deposited in the upper part of resist (a) must be smaller than the damaging dose D_{dm}.
2. The X-ray dose deposited in the bottom part of the resist in the region to be developed (b) must be greater than the development dose D_{dv}.
3. The X-ray dose deposited in the upper part of the resist under an X-ray mask absorber (c) must be smaller than the threshold dose D_{th}.

These exposure requirements may be expressed as inequalities of

$$q_a < D_{\text{dm}}$$ \hspace{1cm} (2)

$$q_b > D_{\text{dv}}$$ \hspace{1cm} (3)

$$q_c < D_{\text{th}}$$ \hspace{1cm} (4)

where q_a, q_b, and q_c are X-ray doses at points a, b, and c, respectively. Applying (1) to the X-ray mask absorber and the resist, the power density P_c at the point c and power density $P(t)$ at depth t within the resist are represented as

$$P_c = P_a e^{-\mu_{\text{ABS}} t_{\text{ABS}}}$$ \hspace{1cm} (5)

$$P(t) = P_0 e^{-\mu_{\text{PR}} t}$$ \hspace{1cm} (6)

The X-ray dose deposited in depth difference Δt of the resist during exposure time τ is $\tau [P(t) - P(t + \Delta t)]$. Thus, the X-ray doses q_I and q_{Π} on paths I and II can be represented by

$$q_I(t) = \tau \mu_{\text{PR}} P_a e^{-\mu_{\text{PR}} t}$$ \hspace{1cm} (7)

$$q_{\Pi}(t) = \tau \mu_{\text{PR}} P_a e^{-\mu_{\text{ABS}} t_{\text{ABS}}} e^{-\mu_{\text{PR}} t}$$ \hspace{1cm} (8)

From (7) and (8), X-ray doses q_a, q_b, and q_c at points a, b, and c are obtained as

$$q_a = q_I(0) = \tau \mu_{\text{PR}} P_a$$ \hspace{1cm} (9)

$$q_b = q_I(t_{\text{PR}}) = \tau \mu_{\text{PR}} P_a e^{-\mu_{\text{PR}} t_{\text{PR}}}$$ \hspace{1cm} (10)

$$q_c = q_{\Pi}(0) = \tau \mu_{\text{PR}} P_a e^{-\mu_{\text{ABS}} t_{\text{ABS}}}$$ \hspace{1cm} (11)

Applying (9), (10), and (11) to inequalities of (2), (3), and (4) yields inequalities of the exposure time τ and the thickness of the X-ray mask absorber, t_{ABS}, satisfying the exposure requirements:

$$\frac{D_{\text{dv}}}{\mu_{\text{PR}} P_a e^{-\mu_{\text{PR}} t_{\text{PR}}}} < \tau < \frac{D_{\text{dm}}}{\mu_{\text{PR}} P_a}$$ \hspace{1cm} (12)

$$t_{\text{ABS}} > \frac{1}{\mu_{\text{ABS}}} \ln \left[\frac{\tau \mu_{\text{PR}} P_a}{D_{\text{th}}} \right]$$ \hspace{1cm} (13)

The left and right side terms of (12) may be defined as the minimum exposure time τ_{min} and the maximum exposure time τ_{max} respectively:

$$\tau_{\text{min}} = \frac{D_{\text{dv}}}{\mu_{\text{PR}} P_a e^{-\mu_{\text{PR}} t_{\text{PR}}}}$$ \hspace{1cm} (14)

$$\tau_{\text{max}} = \frac{D_{\text{dm}}}{\mu_{\text{PR}} P_a}$$ \hspace{1cm} (15)

By substituting τ in (13) by $\kappa \tau_{\text{min}}$ to incorporate a real exposure time τ with a safety factor $\kappa (>1)$, t_{ABS} can be redefined as the necessary thickness of an X-ray mask absorber by

$$t_{\text{ABS}} = l_{\text{ABS}} \left[\frac{\kappa D_{\text{dv}}}{D_{\text{th}}} + \frac{t_{\text{PR}}}{t_{\text{PR}}} \right]$$ \hspace{1cm} (16)

where l_{ABS} and l_{PR} are attenuation lengths of both an X-ray mask absorber and a resist, which are inverses of those attenuation coefficients.

Synchrotron radiation has a broad photon energy bandwidth and the attenuation coefficients are functions of photon energy E. Thus, the minimum exposure time τ_{min} and the maximum exposure time τ_{max} to be applied to a real X-ray exposure are obtained as

$$\tau_{\text{min}} = \frac{D_{\text{dv}}}{\sum_{E} \mu_{\text{PR}}(E) P_a(E) e^{-\mu_{\text{PR}}(E) t_{\text{PR}}}}$$ \hspace{1cm} (17)

$$\tau_{\text{max}} = \frac{D_{\text{dm}}}{\sum_{E} \mu_{\text{PR}}(E) P_a(E)}$$ \hspace{1cm} (18)

where \sum_{E}^N indicates the sum of values of functions over the entire photon energy range of the synchrotron radiation.

Taking the weighted mean of (16) over the whole power spectrum of the X-rays incident upon an X-ray mask absorber, the necessary thickness of an X-ray mask absorber, t_{ABS}, to be applied to a real X-ray mask becomes

$$t_{\text{ABS}} \approx \frac{\sum_{E}^N P_a(E) t_{\text{ABS}}(E)}{\sum_{E}^N P_a(E)}$$ \hspace{1cm} (19)

where $t_{\text{ABS}}(E)$ designates (16).