Study of the $^4\text{He}(e, e'd)pn$ Reaction*

C. M. Spaltro1,2, H. P. Blok1,2, E. Jans2, L. Lapikás2, and S. I. Nagorny1,2

1 Vrije Universiteit, de Boelelaan 1081, NL-1081 HV Amsterdam, The Netherlands
2 NIKHEF, P.O. Box 41882, NL-1009 DB Amsterdam, The Netherlands

Abstract. The cross section for the $^4\text{He}(e, e'd)pn$ reaction has been measured in parallel and in (q, ω)-constant kinematics for values of the three-momentum transfer of 406, 495 and 595 MeV/c, and for a range in missing momentum. Just above threshold this reaction can be characterized as a spin/isospin flip transition of the involved pn pair. By using two electron energies (576 and 370 MeV) the longitudinal and transverse structure functions could be separated. The cross sections turn out to be purely transverse, as expected for a spin/isospin flip transition. The data are well described by new covariant and current-conserving calculations that include the major final-state interaction effects.

1 Introduction

Professor Arenhövel has devoted a large part of his professional life to the study of the proton-neutron (pn) system, both its bound configuration, the deuteron, with spin $S = 1$ and isospin $T = 0$, as well as the pn continuum, which at low energy is characterized by an almost bound state, sometimes indicated by d^*, with spin $S = 0$ and isospin $T = 1$.

It is highly interesting to investigate the properties of a pn system, in both spin/isospin configurations, when it is embedded in a nucleus. In principle the $(e, e'pn)$ reaction is the most appropriate one for studying such correlated pn pairs. The (virtual) photon can transfer zero or one unit of isospin ($\Delta T = 0$ or $\Delta T = 1$ transitions). However, since in the $(e, e'pn)$ reaction the isospin of the final pn system is not known, this reaction does not discriminate between isoscalar and isovector transitions. This is different in the $(e, e'd)$ reaction. Because the deuteron has isospin zero and since possible hadronic interactions in the final state (FSI) conserve isospin, the $(e, e'd)$ reaction works as an isospin filter. If the initial nucleus has $T = 0$, states in the final nucleus with $T = 0$ select isoscalar transitions, whereas final states with $T = 1$ are reached by isovector transitions.

* Dedicated to Prof. H. Arenhövel on the occasion of his 60th birthday
Both types of transitions have been observed in the $^{12}\text{C}(e,e'd)$ reaction [1]. In a direct-reaction description, in which the final nucleus (apart from possible elastic rescattering of the produced deuteron) is a spectator, the mechanism of the isoscalar transition is similar to elastic scattering from the deuteron (although the internal wave function of the pn system in the initial nucleus most probably will differ from that of a free deuteron), while the isovector transition is similar to the inverse of the threshold electrodisintegration of the deuteron ("deuteron reintegration"), i.e., a spin/isospin flip transition, in which an $S = 0, T = 1$ pn system is transformed into an $S = 1, T = 0$ deuteron. Because of the spin-flip character such a transition should be purely transverse. Indeed, the transition to the $T = 1$ state at 0.72 MeV in ^{10}B in the $^{12}\text{C}(e,e'd)$ reaction had no longitudinal component, in contrast to the transitions to the $T = 0$ states. Also the dependence of the cross section on the value of the transferred momentum q was consistent with a "deuteron reintegration" mechanism [1, 2].

However, the nuclear structure in the case of the $^{12}\text{C}(e,e'd)$ reaction is not too well under control. In that respect few-body systems offer much better perspectives, since realistic wave functions for the initial and final states are available. For that reason the $(e,e'd)$ reaction has been studied both on ^{3}He [3–5] and on ^{4}He [6]. The ^{4}He nucleus provides an especially interesting case. Since ^{4}He has isospin zero, the $^{4}\text{He}(e,e'd)d$ reaction probes $T = 0$ proton-neutron correlations in ^{4}He, while the $^{4}\text{He}(e,e'd)pn$ reaction just above the break-up threshold, where the final pn system is dominantly of $S = 0, T = 1$ character, probes initial $T = 1$ correlations. Furthermore ^{4}He has a rather high density, so that proton-neutron correlations are enhanced. In this paper, which we dedicate to Professor Arenhövel, we will discuss the results of a $^{4}\text{He}(e,e'd)pn$ study, which can be considered as the inverse of the threshold electrodisintegration of a deuteron within a nucleus.

There are three important aspects one wants to study when investigating the $(e,e'd)$ reaction: the dependence of the cross section on the missing momentum p_m, its dependence on the (three-)momentum transfer q, and the longitudinal/transverse character of the transition. In a semi-microscopic factorized PWIA approach [2] the first one depends on the centre-of-mass motion of the pn pair, while the second one reflects the relative pn motion (c.q. wave function) inside the nucleus. All three aspects have been investigated.

2 Experiment

The experiment was performed with the extracted electron beam from the pulse-stretcher ring AmPS [7] at NIKHEF. In order to perform an L/T separation incident energies of 370 and 576 MeV were used. The current extracted from the ring was about 6 μA and had a duty factor of about 30%. The scattered electrons were detected with the QDD spectrometer and the knocked-out deuterons with the QDQ spectrometer [8].

A cryogenic gas target [9] operating at 20 K and 1.5 MPa was used, which was filled with a mixture (2:1 in volume) of ^{3}He and ^{4}He gases. The helium gas was contained in a cylinder with its axis aligned along the beam. At both ends the cylinder is closed by 75 μm copper foils. The sides, through which the knocked-out particles pass into the direction of the spectrometers, are made of 25 μm nickel-