Symmetric group actions on homotopy $S^2 \times S^2$

By

Ximin Liu and Hongxia Li

Dalian University of Technology, Dalian, P.R. China

Communicated by P. Michor
Received December 13, 2005; accepted in final form September 25, 2007
Published online 7 December 2007 © Springer-Verlag 2007

Abstract. Let X be a closed smooth 4-manifold which is homotopy equivalent to $S^2 \times S^2$. In this paper we use Seiberg-Witten theory to prove that if X admits a spin symmetric group S_4 action of even type with $b_2^+(X) = b_2^-(X)$, then as an element of $R(S_4)$, $\text{Ind}_{S_4}D_X = k_1(1 - \theta) + k_2(\psi_1 - \psi_2)$ for some integers k_1 and k_2, where $1, \theta, \psi_1, \psi_2$ are irreducible characters of S_4 of degree 1, 1, 3, and 3 respectively.

2000 Mathematics Subject Classification: 57R57, 57M60, 57S25, 57S17
Key words: Homotopy $S^2 \times S^2$, S_4-action, Seiberg-Witten theory

1. Introduction

Let X be a smooth, closed, connected spin 4-manifold. We denote by $b_2(X)$ the second Betti number and denote by $\sigma(X)$ the signature of X. In [9], Matsumoto conjectured the following inequality

$$b_2(X) \geq \frac{11}{8}|\sigma(X)|. \quad (1)$$

This conjecture is well known and has been called the $\frac{11}{8}$-conjecture.

From the classification of unimodular even integral quadratic forms and Rochlin’s theorem, for the choice of orientation with non-positive signature the intersection form of a closed spin 4-manifold X is

$$-2kE_8 \oplus mH, \quad k \geq 0,$$

where E_8 is the 8×8 intersection form matrix and H is the hyperbolic matrix

$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}.$$

Thus, $m = b_2^+(X)$ and $k = -\sigma(X)/16$ and so the inequality (1) is equivalent to $m \geq 3k$. Since $K3$ surface satisfies the equality with $k = 1$ and $m = 3$, the coefficient $\frac{11}{8}$ is optimal, if the $\frac{11}{8}$-conjecture is true.

This work is supported by NSFC (Grant No. 10771023) and NCET.
Donaldson has proved that if \(k > 0 \) then \(m \geq 3 \) [4]. In early 1995, using the Seiberg-Witten theory introduced by Seiberg and Witten [11], Furuta [6] proved that

\[
b_2(X) \geq \frac{5}{4} |\sigma(X)| + 2. \tag{2}
\]

This estimate has been dubbed the \(\frac{10}{3} \)-theorem. Inequality (2) follows by a surgery argument from the non-positive signature, \(b_1(X) = 0 \) case:

Theorem 1 (Furuta [6]). Let \(X \) be a smooth spin 4-manifold with \(b_1(X) = 0 \) with non-positive signature. Let \(k = -\sigma(X)/16 \) and \(m = b_2^+(X) \). Then,

\[
2k + 1 \leq m
\]

if \(m \neq 0 \).

His key idea is to use a finite dimensional approximation of the monopole equation.

In [2], Bryan (see also [5]) used Furuta’s technique of finite dimensional approximation and the equivariant \(K \)-theory to improve the above bound by \(p \) under the assumption that \(X \) has a spin odd type \(\mathbb{Z}/2p \)-action satisfying some non-degeneracy conditions analogous to the condition \(m \neq 0 \). Later Kim [7] gave the same bound for smooth, spin, even type \(\mathbb{Z}/2p \)-action on \(X \) satisfying some non-degeneracy conditions analogous to Bryan’s.

In the paper [8], we used the same method to study the spin \(S_4 \) actions of even type on spin 4-manifold \(X \), we proved that if \(X \) admits a spin \(S_4 \) action of even type, then \(b_2^+(X) \geq |\sigma(X)|/8 + 3 \) under some non-degeneracy conditions.

In the present paper we would like to use Furuta’s technique of finite dimensional approximation and the equivariant \(K \)-theory to study the \(S_4 \) actions on homotopy \(S^2 \times S^2 \) of even type.

To state our main result, we need some preliminaries.

Let \(X \) be a smooth, closed and connected spin 4-manifold. Suppose that \(X \) admits a spin structure preserving action by a compact Lie group (or finite group) \(G \). We may assume a Riemannian metric on \(X \) so that \(G \) acts by isometries. This \(G \)-action can always be lifted to \(\hat{G} \)-actions on the spinor bundles, where \(\hat{G} \) is the following extension

\[
1 \rightarrow \mathbb{Z}/2 \rightarrow \hat{G} \rightarrow G \rightarrow 1.
\]

Recall that the \(G \)-action is of even type if \(\hat{G} \) contains a subgroup isomorphic to \(G \), and in turn is of odd type, otherwise.

For the spin \(G \)-action on \(X \) of even type, the Dirac operator \(D_X \) is \(G \)-equivariant and so, \(\text{Ind}_G D_X = \ker D_X - \text{coker} D_X \in R(G) \). In particular, if \(G = S_4 \), \(\text{Ind}_{S_4} D_X = a + b\theta + c\eta + d\psi_1 + e\psi_2 \in R(S_4) \), where \(1, \theta, \eta, \psi_1 \) and \(\psi_2 \) are 5 irreducible characters of \(S_4 \) of degree 1, 1, 2, 3 and 3 respectively (for detail see Section 3), \(a, b, c, d \) and \(e \) are integers.

Our main result of this paper is as follows:

Theorem 2. Let \(X \) be a closed smooth 4-manifold which is homotopy equivalent to \(S^2 \times S^2 \). If \(X \) admits a spin \(S_4 \) action of even type with \(b_2^+(X/S_4) = b_2^+(X) \),