Synthesis of Highly Functionalized Cyclobutene Derivatives

Issa Yavari* and Mohammad Bayat

Department of Chemistry, University of Tarbiat Modarres, P.O. Box 14115-175, Tehran, Iran

Received November 8, 2002; accepted November 29, 2002
Published online July 3, 2003 © Springer-Verlag 2003

Summary. Protonation of the reactive 1:1 intermediates produced in the reaction between triphenylphosphine and dialkyl acetylenedicarboxylates with CH-acids, such as ethyl 2,4-dioxo-hexanoate and ethyl 2,4-dioxo-5-methylhexanoate, lead to vinyltriphenylphosphonium salts, which undergo an intramolecular Wittig reaction to produce cyclobutene derivatives in fairly high yields.

Keywords. Cyclobutene derivatives; CH-acid; Intramolecular Wittig reaction; Acetylenic esters.

Introduction

Although several strategies for the synthesis of cyclobutenes have been developed in the past [1–3], this class of cyclenes is generally not easily accessible. In recent years, several routes to cyclobutenes via cycloaddition reactions have been described [4–6]. However, the general applicability of these methods is limited. We previously have described the synthesis of cyclobutene derivatives from the stereoselective intramolecular Wittig reaction of a vinyltriphenylphosphonium salt [7–9]. As part of our current studies on the development of new routes to heterocyclic and carbocyclic systems, we now report a convenient and facile synthesis of functionalized cyclobutene derivatives via intramolecular Wittig reaction.

Results and Discussion

The reactions of triphenylphosphine and dialkyl acetylenedicarboxylates 1 in the presence of a strong CH-acid, such as ethyl 2,4-dioxopentanoate (2a), lead to diastereomeric cyclobutene isomers 3 in high yields (Scheme 1).

We have not yet established a mechanism for the formation of 3 in an experimental manner, but a possible explanation is proposed in Scheme 2. On the basis of the well-established chemistry of trivalent phosphorus nucleophiles [10–14], it is reasonable to assume that 3 results from initial addition of triphenylphosphine to
the acetylenic ester and subsequent protonation of the 1:1 adduct by 2. Then, the positively charged ion might be attacked by the conjugate base of the CH-acid to form the phosphorane 4, which is converted to 3 under the reaction conditions employed.

Compounds 3 possess two stereogenic centers, and two diastereoisomers are expected. In fact, the NMR spectra of 3a–3i show the presence of both isomers. The $^3J_{HH}$ values of the two adjacent methine groups have been employed to assign the relative configuration.

The structures of 3a–3i were deduced from their elemental analyses and their IR, 1H, and 13C NMR spectra. The 1H NMR spectra of the cyclobutene derivatives display signals at about $\delta = 3.80–4.02$ ppm for the two methine groups (doublets, $^3J_{HH} = 3.0–6.0$ Hz), in agreement with the cis geometry of these protons together