On Strongly π-Regular Group Rings

A.Y.M. Chin and H.V. Chen

Institute of Mathematical Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
E-mail: acym@um.edu.my

AMS Subject Classification (1991): 16E50, 16U99

Abstract. Let R be an associative ring with unit. An element $x \in R$ is said to be left (right) π-regular if there exist $y \in R$ and a positive integer n such that $x^n = yx^{n+1}$ ($x^n = x^{n+1}y$). If x is both left and right π-regular, then it is said to be strongly π-regular. R is said to be a strongly π-regular ring if all its elements are strongly π-regular. In this paper we determine some conditions which are necessary or sufficient for a group ring to be strongly π-regular.

Keywords: strongly π-regular, regular, group rings

1. Introduction

All rings considered in this paper are associative with unit. An element x in a ring R is said to be left (right) π-regular if there exist $y \in R$ and a positive integer n such that $x^n = yx^{n+1}$ ($x^n = x^{n+1}y$). If x is both left and right π-regular, then it is said to be strongly π-regular. If every element of R is left (right) π-regular, then R is said to be a left (right) π-regular ring. The ring R is strongly π-regular if every element of R is strongly π-regular. By a result of Dischinger [3], all right π-regular rings are left π-regular and vice versa, and all such rings are strongly π-regular. If given any $x \in R$ there exists $y \in R$ such that $xyx = x$, then R is said to be a von Neumann regular ring. In what follows, we shall refer to von Neumann regular rings as just regular rings.

It is known that a strongly π-regular ring is not necessarily regular and vice versa. For example, the ring of $n \times n$ lower triangular matrices over a field \mathbb{F} is strongly π-regular but not regular while the ring of endomorphisms $\text{End}_D(V)$, where V is an infinite dimensional vector space over the division ring D is regular but not strongly π-regular. More properties of strongly π-regular and regular rings can be found for example in [1] and [4].

Necessary and sufficient conditions for a group ring to be regular have been known since the late fifties and early sixties (see [5, Theorem 3.15] for example). In this paper we study strongly π-regular group rings and obtain some conditions which are necessary or sufficient for a group ring to be strongly π-regular.
2. Some Preliminaries

Let \(R \) be a ring and suppose that \(R \) is not right \(\pi \)-regular. Then there exists an element \(x \in R \) such that given any positive integer \(n, x^n \neq x^{n+1}y \) for any \(y \in R \). We then have a descending chain

\[
xR \supseteq x^2R \supseteq x^nR \supseteq x^{n+1}R \supseteq \cdots
\]

of right ideals of \(R \) which does not terminate; thus \(R \) is not artinian. It follows from this that artinian rings must be strongly \(\pi \)-regular.

It is straightforward to show that homomorphic images of strongly \(\pi \)-regular rings are strongly \(\pi \)-regular.

Let \(R \) be a ring and \(G \) a group. We shall denote the group ring of \(G \) over \(R \) as \(RG \). For any element \(r = \sum_{g \in G} r_g g \in RG \), the support of \(r \), written as \(\text{Supp}(r) \), is the subset of \(G \) consisting of all those \(g \in G \) such that \(r_g \neq 0 \). Since \(r_g \neq 0 \) for only finitely many \(g \in G \), \(\text{Supp}(r) \) is a finite subset of \(G \). The augmentation ideal of \(RG \) is the ideal of \(RG \) generated by \(\{1 - g | g \in G\} \). We shall use \(\Delta \) to denote the augmentation ideal of \(RG \). It is known (see [5] for example) that \(R \) is a homomorphic image of \(RG \) since \(RG/\Delta \cong R \).

3. Strongly \(\pi \)-Regular Group Rings

The main result in this section is as follows:

Theorem 3.1. Let \(R \) be a ring and \(G \) a group. If \((R/P)G \) is strongly \(\pi \)-regular for every prime ideal \(P \) of \(R \), then \(RG \) is strongly \(\pi \)-regular.

Proof. Suppose to the contrary that \(RG \) is not strongly \(\pi \)-regular. Then there exists an element \(x \in RG \) such that for any positive integer \(n, x^n \neq x^{n+1}y \) for any \(y \in RG \). Therefore the sequence \(xRG \supseteq x^2RG \supseteq \cdots \supseteq x^nRG \supseteq x^{n+1}RG \supseteq \cdots \) of right ideals of \(RG \) does not terminate. Let \(F \) be the set of all ideals \(I \) of \(R \) such that the sequence \((x + IG)(RG/IG) \supseteq (x + IG)^2(RG/IG) \supseteq \cdots \) does not terminate. Note that \(F \neq \emptyset \) since \((0) \in F \). Furthermore, \(F \) is partially ordered by inclusion. Let \((I_z)_{z \in \Omega} \) be a chain of elements of \(F \) and let \(J = \bigcup_{z \in \Omega} I_z \). Clearly, \(J \) is an ideal of \(R \) and \(I_z \subseteq J \) for all \(z \in \Omega \). We show that \(J \in F \). Suppose that \(J \notin F \). Then \(z = x^n - x^{n+1}r \in JG \) for some \(r \in RG \) and some positive integer \(n \). Since \(\text{Supp}(z) \) is finite, there exists some \(z \in \Omega \) such that \(z \in I_zG \). It follows that the sequence

\[
(x + I_zG)(RG/I_zG) \supseteq (x + I_zG)^2(RG/I_zG) \supseteq \cdots
\]

terminates, which is a contradiction. Therefore \(J \in F \) and thus by Zorn's Lemma, \(F \) contains a maximal element \(M \). Since \((R/M)G \supseteq RG/MG \) is not strongly \(\pi\)-