Necessary and Sufficient Conditions for Oscillation of Delay Parabolic Differential Equations

Wei Nian Lia,b

a Department of Mathematics, Qufu Normal University, Shandong 273165, China
E-mail: wnli@xinhuanet.com

Bao Tong Cuib

b Department of Mathematics, Binzhou Normal College, Shandong 256604, China

AMS Subject Classification (2000): 35B05, 35R10

Abstract. Necessary and sufficient conditions for oscillation of delay parabolic differential equations are obtained.

Keywords: Oscillation; Parabolic differential equation; Delay

1. Introduction

In the past few years, Mishev and Bainov [4], Yu and Chen [5] have studied the necessary and sufficient conditions for oscillation of neutral partial differential equations with constant parameters. Recently, Cui and Li [1] established a necessary and sufficient condition for oscillation of parabolic equations of the form

\[
\frac{\partial}{\partial t} u(x, t) = a(t) \Delta u(x, t) + \sum_{k=1}^{s} a_k(t) \Delta u(x, t - \rho_k(t)) - \sum_{j=1}^{m} q_j(t) u(x, t - \sigma_j(t)),
\]

\[(x, t) \in \Omega \times [0, \infty) \equiv G,\]

with the boundary condition

\[
u(x, t) = 0, \quad (x, t) \in \partial \Omega \times [0, \infty),\]

where \(\Omega \) is a bounded domain in \(R^N \) with a piecewise smooth boundary \(\partial \Omega \), and \(\Delta \) is the Laplacian in the Euclidean \(N \)-space \(R^N \); \(a, a_k, q_j \in C([0, \infty); [0, \infty)), \rho_k, \sigma_j \in C([0, \infty); [0, \infty)); \lim_{t \to \infty} (t - \rho_k(t)) = \lim_{t \to \infty} (t - \sigma_j(t)) = \infty, \quad k \in I_s = \{1, 2, \ldots, s\}, j \in I_m = \{1, 2, \ldots, m\} \).

The main result in [1] is as follows:

\footnote{This work is supported by the Natural Science Foundation of Shandong Province, China (Y2001A03).}
Theorem A. Suppose that there exists a nonempty set \(I^* \subseteq I_{s+m} = \{1, 2, \ldots, s + m\} \) such that

(B1) \(T_i(t) > 0 \) for \(t \geq 0, i \in I^*; \)
(B2) \(\sum_{i \in I^*} P_i(t) > 0 \) for \(t \geq 0, \)

where

\[
T_i(t) = \begin{cases}
 \rho_i(t), & 1 \leq i \leq s, \\
 \sigma_{i-s}(t), & s + 1 \leq i \leq s + m,
\end{cases}
\]

\[
P_i(t) = \begin{cases}
 a_i(t), & 1 \leq i \leq s, \\
 q_{i-s}(t), & s + 1 \leq i \leq s + m.
\end{cases}
\]

Then every solution of the problem (1), (2) is oscillatory in \(G \) if and only if the differential inequality

\[
V'(t) + \sum_{k=1}^{s} a_k(t) V(t - \rho_k(t)) + \sum_{j=1}^{m} q_j(t) V(t - \sigma_j(t)) \leq 0 \quad (3)
\]

has no eventually positive solutions.

In this paper, we consider the boundary conditions (2) and

\[
\frac{\partial u(x,t)}{\partial N} = 0, \quad (x,t) \in \partial \Omega \times [0, \infty), \quad (4)
\]

where \(N \) is the unit exterior normal vector to \(\partial \Omega \). Some necessary and sufficient conditions for oscillation of the problem (1), (2) and (1), (4) are obtained.

The function \(u \in C^2(G) \cap C^1(\partial G) \) is said to be a solution of the problem (1), (2) (or (1), (4)) if it satisfies (1) in the domain \(G \) and the boundary condition (2) (or (4)). The solution \(u(x,t) \) of the problem (1), (2) (or (1), (4)) is said to be oscillatory in the domain \(G = \Omega \times [0, \infty) \) if for any positive number \(\mu \) there exists a point \((x_0, t_0) \in \Omega \times [\mu, \infty) \) such that the equality \(u(x_0, t_0) = 0 \) holds.

2. Main Results

The following facts are useful in the proof of our main results.

Lemma [2]. Consider the equation

\[
V'(t) + \sum_{i=1}^{n} p_i(t) V(t - \sigma_i(t)) = 0. \quad (5)
\]

Suppose that the following conditions hold: