The Reduction of Harmonic and Intermodulation Distortions with a Cascaded Mach-Zehnder Modulator

Ching-Ting Lee, How-Chiang Lee and Lih-Gen Sheu

Institute of Optical Science, National Central University, Chung-Li, Taiwan, Republic of China

(Accepted March 25, 1996; Accepted July 2, 1996)

A cascaded two-stage Mach-Zehnder modulator is used to suppress the harmonic and intermodulation distortions simultaneously. The modulation electric fields are applied on the first and second stages in the y and z directions of z-cut lithium niobate crystal, respectively. Because of the inherent versatility of the adjustable modulation parameters, superior linear modulation response can be achieved. When -50 dB nonlinear suppression is required, the modulation depth of 7.5% can be obtained.

Key words: cascaded Mach-Zehnder modulator, modulation depth, harmonic distortion, intermodulation distortion, transmission factor

1. Introduction

The external modulation of a continuous-wave laser has received increasing interest globally for high speed applications of electro-optic (EO) systems. The titanium indiffused lithium niobate (Ti:LiNbO3) Mach-Zehnder modulator has found extensive applications due to its excellent EO effect. However, the linearity of the output signal is a critical problem owing to the induced Bessel-function distributions of this modulator. Several linearization techniques have been reported in the literature to reduce the nonlinear distortions, however, their reduction is primarily concentrated on the third intermodulation (IM) distortion. The dual parallel linearization system consisting of two parallel Mach-Zehnder modulators has been widely used.1,2 Because of the arrangement of the electrodes, the performance of the dual parallel modulation scheme is deteriorated by its associated crosstalk. Furthermore, a predistortion linearization technique using an additional nonlinear device to improve the distortions was also employed recently.3,4 Nevertheless, the additional electric predistortion circuit makes the system complicated and the electrical signal processing speed limits the high-frequency implementation. The John-Roussell scheme was applied to compensate for the nonlinear response by single-stage Mach-Zehnder modulator, in which the polarizations of the input optical signal were mixed with transverse electric (TE) and transverse magnetic (TM) modes.5,6 When the polarization angle \(\theta \) is far from the \(z \)-axis of the LiNbO3 crystal, the modulation sensitivity is degraded. The cascaded dual Mach-Zehnder modulator was proposed to reduce the third-order IM distortions but its performance was degraded by the induced higher second harmonic distortions.7 In this work, a two stage cascaded Mach-Zehnder structure is integrated in series in a LiNbO3 crystal. The modulated electric fields of the first and second stages are applied in the \(y \) and \(z \) directions as shown in Fig. 1, respectively. Moreover, the two-tone input signals \(\omega_1 \) and \(\omega_2 \) (\(\omega_1 \neq \omega_2 \)) are individually driven to the first and second stages. The harmonic (\(2\omega_1, 3\omega_1, \ldots \)) and IM (\(\omega_1 \pm \omega_2, 2\omega_1 \pm \omega_2, \ldots \)) distortions can be suppressed simultaneously by controlling the device operation parameters and incident laser polarization angle. The reduction of nonlinear distortions for larger frequency span can be obtained. The superior performances of the cascaded Mach-Zehnder modulator are demonstrated theoretically and experimentally.

2. Fabrication of Cascaded Mach-Zehnder Modulator

Figure 1 shows the basic configuration of the cascaded Mach-Zehnder modulator. Titanium film with a thickness of 400 Å was first deposited on the \(z \)-cut LiNbO3 crystal. After the lift-off process, the resultant Ti pattern with a stripe width of 5 \(\mu \)m was diffused in a furnace at 1000°C for 6 h under dry oxygen ambient. The LiNbO3 powder was used to compensate for the out-diffusion of the Li2O during the diffusion period.8 Furthermore, a SiO2 buffer layer with a thickness of 1000 Å was deposited and processed on the second stage region to prevent propagation loss caused by the absorption of the electrode metal. Two sets of metal Au electrodes were then deposited and lifted-off sequentially. According to the arrangement of the electrodes, the modulation electric fields of the first and second stages are applied in the \(y \) and \(z \) directions, respectively. The electrode gaps of the first and second stages are 24 \(\mu \)m and 48 \(\mu \)m, respectively. Length of the two sets of electrodes is 8500 \(\mu \)m.

3. Theoretical Analyses and Experimental Results

The experimental setup is shown in Fig. 2. The polarization angle \(\theta \) of the incident He-Ne laser beam was controlled by a polarizer. The incident laser beam was focused and coupled onto the device with 20× objective lens; the output laser beam was collected by another 20× objective lens. Two tone modulation signals (\(V_{1ac} \sin \omega_1 t \) and \(V_{2ac} \sin \omega_2 t \)) and DC biases (\(V_{1dc} \) and \(V_{2dc} \)) were applied simultaneously to the first and second stages of the cascaded Mach-Zehnder modulator, respectively. The aperture diameter was adjusted to pass the guided beam and block the other evanescent beam. The modulated output laser beam
was then detected using a Si photodetector and shown under an oscilloscope (HP 54510A) or a spectrum analyzer (HP 8370A) sequentially.

The transmission factor is written as

$$P_2 = \cos^2 \theta \cos^2 (\phi_{ac} + \phi_{dc}) \cos^2 (\phi_{2,ac} + \phi_{2,dc}) \pm \sin^2 \theta \cos^2 (\phi_{ac} + \phi_{dc})$$

where P_2 is the output intensity, P_1 is the input intensity, and ϕ_{ac} and ϕ_{dc} are the induced phase shifts of the nth stage due to the applied DC and AC signals, respectively. According to the configuration shown in Fig. 1, ϕ_{ac} and ϕ_{dc} are

$$\phi_{ac} = \frac{\pi V_{ac}}{2 V_{s1}}$$
$$\phi_{dc} = \frac{\pi V_{dc}}{2 V_{s1}}$$

Expanding Eq. (1) in terms of Bessel functions, the harmonic and IM distortions can be obtained. In this study, the second and third nonlinear distortions are considered as dominant terms and higher order nonlinear terms are neglected. We get:

the fundamental terms

$$P_{20w} = -0.5 b_1 \cos^2 \theta [J_1(X_1) + a_2 J_1(X_2) J_1(X_3)]$$
$$P_{20w} = -b_3 \sin^2 \theta J_2(X_1)$$
$$P_{21w} = 0.5 b_1 \cos^2 \theta [J_1(X_2) + a_2 J_1(X_1) J_1(X_2)]$$
$$P_{21w} = -b_3 \sin^2 \theta J_2(X_3) - 0.5 b_2 \cos^2 \theta J_2(X_2)$$
$$P_{22w} = 0.5 b_1 b_2 \cos^2 \theta J_1(X_1) J_1(X_2)$$
$$P_{22w} = -0.5 b_2 \cos^2 \theta J_1(X_2) J_1(X_3)$$

According to Eq. (1), the transmission factor is a function of θ, V_1 ($= V_{dc} + V_{ac}$) and V_2 ($= V_{dc} + V_{ac}$). Therefore, to obtain a large linear adjustment region, the optimum operation point can be achieved by suitable choice of θ, V_{dc} and V_{ac}. By simulating the dependences of the transmission factor on the chosen parameters simultaneously, the suitable polarization angle θ was first set at 68°. The three dimensional curve of the transmission factor shown in Fig. 3 was then simulated. Therefore, for linear performance with larger range modulation depth operation, the simulated optimal operation point was chosen at $\theta=68°$, $V_{dc}=0.25 V_s$, and $V_{ac}=0.5 V_s$. The applied frequencies of the first and second stages are 200 kHz (f_1) and 230 kHz (f_2) in this study, respectively. The frequencies of the second harmonic and IM distortions are 400 kHz for $2f_1$, 460 kHz for $2f_2$ and 430 kHz for f_1+f_2. The frequencies of the third harmonic and IM distortions are 600 kHz for $3f_1$ and 690 kHz for $3f_2$, 170 kHz for $2f_1-f_2$, 260 kHz for $2f_2-f_1$, 630 kHz for $2f_1+f_2$, and 660 kHz for $2f_2+f_1$. Figure 4 shows the received optical power spectrum for modulation depth 14%. The indicated frequency is from 150 kHz to 710 kHz. The span involves the frequencies of the second and third order harmonic distortion terms and IM terms. The funda-

The transmission factor is written as

$$P_2 = \cos^2 \theta \cos^2 (\phi_{ac} + \phi_{dc}) \cos^2 (\phi_{2,ac} + \phi_{2,dc}) \pm \sin^2 \theta \cos^2 (\phi_{ac} + \phi_{dc})$$

where P_2 is the output intensity, P_1 is the input intensity, and ϕ_{ac} and ϕ_{dc} are the induced phase shifts of the nth stage due to the applied DC and AC signals, respectively. According to the configuration shown in Fig. 1, ϕ_{ac} and ϕ_{dc} are

$$\phi_{ac} = \frac{\pi V_{ac}}{2 V_{s1}}$$
$$\phi_{dc} = \frac{\pi V_{dc}}{2 V_{s1}}$$

Expanding Eq. (1) in terms of Bessel functions, the harmonic and IM distortions can be obtained. In this study, the second and third nonlinear distortions are considered as dominant terms and higher order nonlinear terms are neglected. We get:

the fundamental terms

$$P_{20w} = -0.5 b_1 \cos^2 \theta [J_1(X_1) + a_2 J_1(X_2) J_1(X_3)]$$
$$P_{20w} = -b_3 \sin^2 \theta J_2(X_1)$$
$$P_{21w} = 0.5 b_1 \cos^2 \theta [J_1(X_2) + a_2 J_1(X_1) J_1(X_2)]$$
$$P_{21w} = -b_3 \sin^2 \theta J_2(X_3) - 0.5 b_2 \cos^2 \theta J_2(X_2)$$
$$P_{22w} = 0.5 b_1 b_2 \cos^2 \theta J_1(X_1) J_1(X_2)$$
$$P_{22w} = -0.5 b_2 \cos^2 \theta J_1(X_2) J_1(X_3)$$

According to Eq. (1), the transmission factor is a function of θ, V_1 ($= V_{dc} + V_{ac}$) and V_2 ($= V_{dc} + V_{ac}$). Therefore, to obtain a large linear adjustment region, the optimum operation point can be achieved by suitable choice of θ, V_{dc} and V_{ac}. By simulating the dependences of the transmission factor on the chosen parameters simultaneously, the suitable polarization angle θ was first set at 68°. The three dimensional curve of the transmission factor shown in Fig. 3 was then simulated. Therefore, for linear performance with larger range modulation depth operation, the simulated optimal operation point was chosen at $\theta=68°$, $V_{dc}=0.25 V_s$, and $V_{ac}=0.5 V_s$. The applied frequencies of the first and second stages are 200 kHz (f_1) and 230 kHz (f_2) in this study, respectively. The frequencies of the second harmonic and IM distortions are 400 kHz for $2f_1$, 460 kHz for $2f_2$ and 430 kHz for f_1+f_2. The frequencies of the third harmonic and IM distortions are 600 kHz for $3f_1$ and 690 kHz for $3f_2$, 170 kHz for $2f_1-f_2$, 260 kHz for $2f_2-f_1$, 630 kHz for $2f_1+f_2$, and 660 kHz for $2f_2+f_1$. Figure 4 shows the received optical power spectrum for modulation depth 14%. The indicated frequency is from 150 kHz to 710 kHz. The span involves the frequencies of the second and third order harmonic distortion terms and IM terms. The funda-